VISION

To contribute to India and the World through excellence in scientific and technical education and research; to serve as a valuable resource for industry and society; and remain a source of pride for all Indians.

MISSION

To generate new knowledge by engaging in cutting-edge research and to promote academic growth by offering state-of-the-art undergraduate, postgraduate and doctoral programmes.

To identify, based on an informed perception of Indian, regional and global needs, areas of specialization upon which the Institute can concentrate.

To undertake collaborative projects which offer opportunities for long-term interaction with academia and industry.

To develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders can emerge in a range of professions.

VALUES

- Academic integrity and accountability.
- Respect and tolerance for the views of every individual.
- Attention to issues of national relevance as well as of global concern.
- Breadth of understanding, including knowledge of the human sciences.
- Appreciation of intellectual excellence and creativity.
- An unfettered spirit of exploration, rationality and enterprise.
CONTENTS

1. **INTRODUCTION**
 1.1 Administration

2. **ACADEMICS**
 2.1 Academic System
 2.2 Academic Structure
 2.3 Research and Innovation
 2.4 Collaborations
 2.5 Student Exchange Programmes
 2.6 Academic Programmes

3. **ADMISSIONS**
 3.1 Undergraduate Programmes
 3.2 Postgraduate Programmes
 3.3 Joint Degree Programmes
 3.4 Scholarships
 3.5 Admission to Postgraduate Programmes
 3.6 Medals and Prizes

4. **FEES**
 4.1 Fees Payable by Students of the Entry Year 2021
 4.2 Foreign National Visiting Students
 4.3 Mode of Payment
 4.4 Deadlines for Payment
 4.5 Refund of Fees

5. **STUDENT LIFE ON CAMPUS**
 5.1 Board for Hostel Management
 5.2 Student Affairs Council (SAC)
 5.3 Co-curricular and Academic Interaction Council (CAIC)
 5.4 Co-curricular Activities
 5.5 The Students’ Activity Centre
 5.6 Students’ Canteens
 5.7 Stationery Shop/Telephone Booths
 5.8 Board for Sports Activities (BSA)
 5.9 Board for Recreational and Creative Activities (BRCA)
 5.10 Board for Student Publications (BSP)
 5.11 Board for Students Welfare (BSW)
 5.12 National Service Scheme (NSS)
 5.13 National Cadet Corps (NCC)
 5.14 National Sports Organization (NSO)
 5.15 Student Counselling Service (SCS)
 5.16 Entrepreneurship Development Cell (EDC)
 5.17 Departmental Professional Societies
 5.18 Medical Facilities
 5.19 Student-Teacher Interaction
 5.20 Alumni Association
 5.21 Conduct and Discipline
 5.22 Honour Code
 5.23 Institute Policy on Ragging
 5.24 Policy against Sexual Harassment

6. **ACADEMIC UNITS**
 6.1 Applied Mechanics
 6.2 Biochemical Engineering and Biotechnology
 6.3 Chemical Engineering
 6.4 Chemistry
 6.5 Civil Engineering
 6.6 Computer Science and Engineering
 6.7 Design

© IITD
Prospectus 2021-22
<table>
<thead>
<tr>
<th>Department/Programme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering</td>
<td>91</td>
</tr>
<tr>
<td>Energy Science and Engineering</td>
<td>101</td>
</tr>
<tr>
<td>Humanities and Social Sciences</td>
<td>109</td>
</tr>
<tr>
<td>Management Studies</td>
<td>117</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>125</td>
</tr>
<tr>
<td>Mathematics</td>
<td>131</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>137</td>
</tr>
<tr>
<td>Physics</td>
<td>145</td>
</tr>
<tr>
<td>Textile and Fibre Engineering</td>
<td>157</td>
</tr>
<tr>
<td>Centre for Applied Research in Electronics</td>
<td>165</td>
</tr>
<tr>
<td>Centre for Atmospheric Sciences</td>
<td>169</td>
</tr>
<tr>
<td>Centre for Automotive Research and Tribology (formerly ITMMEC)</td>
<td>175</td>
</tr>
<tr>
<td>Centre for Biomedical Engineering</td>
<td>179</td>
</tr>
<tr>
<td>Educational Technology Services Centre</td>
<td>185</td>
</tr>
<tr>
<td>Computer Services Centre</td>
<td>189</td>
</tr>
<tr>
<td>National Resource Centre for Value Education in Engineering</td>
<td>195</td>
</tr>
<tr>
<td>Optics and Photonics Centre</td>
<td>199</td>
</tr>
<tr>
<td>Centre for Rural Development and Technology</td>
<td>207</td>
</tr>
<tr>
<td>Centre for Sensors, Instrumentation and Cyber-Physical Systems Engineering (formerly IDDC)</td>
<td>213</td>
</tr>
<tr>
<td>Transportation Research and Injury Prevention Centre</td>
<td>217</td>
</tr>
<tr>
<td>Amar Nath and Shashi Khosla School of Information Technology</td>
<td>221</td>
</tr>
<tr>
<td>School of Artificial Intelligence</td>
<td>225</td>
</tr>
<tr>
<td>Bharti School of Telecommunication Technology and Management</td>
<td>231</td>
</tr>
<tr>
<td>Kusuma School of Biological Sciences</td>
<td>239</td>
</tr>
<tr>
<td>School of Interdisciplinary Research</td>
<td>247</td>
</tr>
<tr>
<td>School of Public Policy</td>
<td>251</td>
</tr>
<tr>
<td>Interdisciplinary Research Programmes</td>
<td>255</td>
</tr>
<tr>
<td>Interdisciplinary M.Tech. Programmes</td>
<td>257</td>
</tr>
</tbody>
</table>

7. MAJOR CENTRAL FACILITIES

7.1 Central Research Facility (CRF) | 260 |
7.2 Industrial Research and Development Unit | 272 |
7.3 Central Workshop | 278 |
7.4 Nanoscale Research Facility | 279 |
7.5 Office of Career Services | 280 |
7.6 Central Library | 281 |

8. ADMINISTRATIVE STRUCTURE

Honour Code - Undertaking | 293 |
1. INTRODUCTION

Indian Institute of Technology Delhi is one of the Twenty Three IITs created to be Centres of Excellence for training, research and development in science, engineering and technology in India.

Established as College of Engineering in 1961, the Institute was later declared as an Institution of National Importance under the “Institutes of Technology (Amendment) Act, 1963” and was renamed as “Indian Institute of Technology Delhi”. It was then accorded the status of a Deemed University with powers to decide its own academic policy, to conduct its own examinations, and to award its own degrees.

The Institute was declared as an "Institute of Eminence" by the Government of India in 2018.
Since its inception, around 54,000 students have graduated from IIT Delhi in various disciplines including Engineering, Physical Sciences, Management, and Humanities & Social Sciences. Of these, more than 6,000 students have graduated with Ph.D. degree and around 18,000 students have graduated with B.Tech. degree. The rest obtained Master’s Degree in Engineering, Sciences and Business Administration. These alumni today work as scientists, technologists, business managers and entrepreneurs. There are several alumni who have moved away from their original disciplines and have taken to administrative services, active politics or are with NGOs. In doing so, they have contributed significantly to building of this nation, and to industrialization around the world.
IIT Delhi is situated in Hauz Khas in South Delhi, which is a landmark place in the colourful and chequered history of Delhi. Bounded by the Sri Aurobindo Marg on the east, the Jawaharlal Nehru University Complex on the west, the National Council of Educational Research and Training on the south, and the Outer Ring Road on the north, the Institute campus is flanked by Qutub Minar and the Hauz Khas monuments.

Well connected to the major city centres by open and wide roads, the Institute campus is about 19 k.m. away from the Delhi Main Railway Station, 14 k.m. from the New Delhi Railway Station, 21 k.m. from the Inter-State Bus Terminal (Kashmere Gate) and 10 k.m. from Delhi Airport. Delhi Metro has two gates opening at the Institute Campus.

Campus of the Institute extends to an area of 320 acres. With many topographical features, imaginatively laid out with picturesque landscape, numerous buildings of various nature and stature, and clean and wide roads, the campus presents a spectacle of harmony in architecture and natural beauty.

The campus area is divided into four functional zones: (i) Residential zone for students; (ii) Residential zone for the faculty and other supporting staff; (iii) Academic zone for academic buildings and workshops; and (iv) Cultural-cum-social and recreational zone for students.

The campus also offers amenities like Staff Clubs, Hospital, Shopping Centre, Banks, Post Office, Telecom Centre, Community Centre, Stadium, Playing Fields, etc. The Students Activities Centre provides all facilities for students’ extra-curricular activities and physical development.
The central double-storied recreation block with a swimming pool and a gymnasium hall offers amenities such as squash courts, hobbies workshops/seminar rooms, music rooms and other multipurpose rooms for reading and indoor games. The amphitheater with large capacity constructed in modern style is an added amenity to the centre.

IIT Delhi has been extending its boundaries. One extension campus has been established in Sonepat, Haryana over 50 acres of land allocated by Haryana Government. A Technopark filled with high class facilities has been set-up there. Another extension campus will come up in near future in Jhajjar, Haryana over 50 acres of land.
1.1 Administration

IIT Delhi is an autonomous statutory organization functioning within the “Institutes of Technology Act” as amended by “The Institutes of Technology (Amendment) Act, 1963”.

The Indian Institutes of Technology are administered centrally by the IIT Council, an apex body established by the Government of India to co-ordinate the activities of these Institutes.

The Hon’ble Minister of Education of the Government of India is the Chairman of the IIT Council. Each Indian Institute of Technology has a Board of Governors responsible for its overall administration and control.

Dr. R. Chidambaram is the Chairman, Board of Governors of IIT Delhi. Dr. Rajagopala Chidambaram became the Director of the Bhabha Atomic Research Centre (BARC) in 1990. He was Chairman, Atomic Energy Commission from 1993 to 2000. He was the Principal Scientific Adviser to the Govt. of India and the Chairman of the Scientific Advisory Committee to the Cabinet from 2001 to 2018. He is presently the DAE-Homi Bhabha Professor in BARC.

Dr. Chidambaram has made important contributions to many aspects of our nuclear technology. He has D.Sc. Degrees (h.c) from thirty Universities from India and abroad. He has more than 200 research publications in refereed journals and all his research work has been in India.

He was Chairman of the Board of Governors of the IAEA during 1994-95. During 1990-99, he was a member of the Executive Committee of the International Union of Crystallography, the last three years as its Vice-President. He has been Chairman, Board of Governors of IIT Bombay (1994-97) and of IIT Madras (2008-2011) and Member, Space Commission (2009-2014). Dr. Chidambaram is currently Chairman of the Board of Governors of IIT, Jodhpur. He is also a Honorary Visiting Professor in the Department of Physics, Banaras Hindu University.

Dr. Chidambaram is a Fellow of all the major Science Academies in India and also of the National Academy of Engineering and the The World Academy of Sciences Trieste (Italy).

He has received many awards and honours, notable among them are the C.V. Raman Birth Centenary Award of the Indian Science Congress Association in 1995, the Distinguished Materials Scientists of the Year Award of the Material Research Society of India (MRSI) in 1996, R.D. Birla Award of the Indian Physics Association in 1996, Homi Bhabha Lifetime Achievement Award of the Indian Nuclear Society (2006), The Lifetime Achievement Award of the Indian National Academy of Engineering (2009) and the C.V. Raman Medal of the Indian National Science Academy (2013). Lifetime Achievement Award of A.P. Akademi of Sciences (2014), Lifetime Achievement Award of the Council of Power Utilites(2014). Dr. Chidambaram was awarded the Padma Vibhushan, the second highest civilian award in India, in 1999.

His initiatives as Principal Scientific Adviser to Government of India, include the setting up of the Core Advisory Groups for R&D in various technology sectors, the creation of RuTAG (Rural Technology Action Group) centered in 7 IITs, the establishment of SETS (Society for Electronic Transactions and Security), helping nucleate the Centres of Excellence in Nanoelectronics, the National Knowledge Network and initiating an R&D programme on the design of the Advanced Ultra Supercritical Thermal Plant, through a consortium of IGCAR, BHEL and NTPC.
Prof. V. Ramgopal Rao is the Director of IIT Delhi. Before joining IIT Delhi as the Director in April 2016, Dr. Rao served as a P.K. Kelkar Chair Professor for Nanotechnology in the Department of Electrical Engineering and as the Chief Investigator for the Centre of Excellence in Nano-electronics project at IIT Bombay. Dr. Rao has over 450 research publications in the area of nanoscale devices & nanoelectronics and is an inventor on 45 patents and patent applications, which include 17 issued US patents. Twelve of his patents have been licensed to industries for commercialization. Prof. Rao is a co-founder of two deep technology startups at IIT Bombay (Nanosniff.com and Soilsens.com) which are developing products of relevance to the society. Dr. Rao is a Fellow of IEEE, a Fellow of the Indian National Academy of Engineering, the Indian Academy of Sciences, the National Academy of Sciences, and the Indian National Science Academy.

Prof. Rao’s work is recognized with many awards and honors in the country and abroad. He is a recipient of the Shanti Swarup Bhatnagar Prize in Engineering Sciences in 2005 and the Infosys Prize in 2013. Dr. Rao also received the Swarnajayanti Fellowship award from the Department of Science & Technology, IBM Faculty award, Best Research award from the Intel Asia Academic Forum, TechnoMentor award from the Indian Semiconductor Association, DAE-SRC Outstanding Research Investigator award, NASI-Reliance Platinum Jubilee award, J.C. Bose National Fellowship, Prof. C.N.R. Rao National Nanoscience award, VASVIK Award, DRDO Academic Excellence award and the Excellence in Research Award from IIT Bombay. Prof. Rao was an Editor for the IEEE Transactions on Electron Devices during 2003-2012 for the CMOS Devices and Technology area and currently serves on the Editorial boards of other journals. He is a Distinguished Lecturer, IEEE Electron Devices Society and interacts closely with many semiconductor industries in India and abroad.

Prof. Rao served as the Chairman, IEEE AP/ED Bombay Chapter and as a Vice-chairman, IEEE Asia Pacific Regions/Chapters sub-committee for two terms. He was the first elected Chairman for the India section, American Nano Society during 2013-2015.

THE SENATE

The Senate decides the academic policy of the Institute, and approves curriculum, courses and examination results. It appoints committees to look into specific academic matters arising from time to time. The teaching, training and research activities of various departments at the Institute are constantly under review to improve both facilities and standard. The Director of the Institute is the Chairman of the Senate.
INSTITUTE COMMITTEES

Financial advice to the Institute is rendered by the Finance Committee. Similarly, there is a Buildings and Works Committee to advise on matters relating to buildings and works activity. These committees are appointed by the Board of Governors. In addition, there are a number of other committees like the Board of Academic Programmes, Board of Educational Research and Planning, appointed by the Senate to help the administration in the efficient running of the Institute.

2. ACADEMICS

IIT Delhi provides science-based engineering education with a view to produce quality engineer-scientists. The curriculum provides broad based knowledge and simultaneously builds a temper for the life long process of learning and exploring.

2.1 Academic System

At the undergraduate level, a student needs to do compulsory foundation courses in the areas of basic sciences, humanities & social sciences and engineering sciences apart from departmental requirements. At postgraduate level, several specializations, in the form of various M.S.(R), M.Tech., M.B.A., M.Des., M.P.P., P.G. D.I.I.T., and M.Sc., are available and the students get an exposure and training in research in their chosen fields. The Institute has strong Ph.D. programmes and the students carry out advanced research under the guidance of the members of the Institute faculty.

The Institute undertakes a major revision of its curriculum periodically. From the academic session 2013-14, a new undergraduate curriculum has been in place and the new postgraduate curriculum has been implemented from the academic session 2015-16.

The Institute follows the semester system. An academic year runs from July through June next year and comprises two semesters. Typically, the 1st semester starts in the last week of July and ends in the 1st week of December; and the 2nd semester starts in the first week of January and ends in the 2nd week of May. Additionally, the summer semester which starts in the 3rd week of May and ends in the 2nd week of July, is utilised in some exceptional cases. Detailed activities are given in the Semester Schedule that is available before the start of every semester.

2.2 Academic Structure

The major academic units of the Institute are the Departments, Centres and Schools. Interdisciplinary research is organized in programmes. The various academic units are listed below, and details are given latter in this document. The activities of Departments include teaching at all levels and research. The Centres focus on interdisciplinary research and some teaching mostly at the postgraduate level.
DEPARTMENTS

- Department of Applied Mechanics
- Department of Biochemical Engineering and Biotechnology
- Department of Chemical Engineering
- Department of Chemistry
- Department of Civil Engineering
- Department of Computer Science and Engineering
- Department of Design
- Department of Electrical Engineering
- Department of Energy Science and Engineering *(formerly CES)*
- Department of Humanities and Social Sciences
- Department of Management Studies
- Department of Materials Science and Engineering
- Department of Mathematics
- Department of Mechanical Engineering
- Department of Physics
- Department of Textile and Fibre Engineering *(formerly Textile Technology)*

SCHOOLS

- Amar Nath and Shashi Khosla School of Information Technology
- School of Artificial Intelligence
- Bharti School of Telecommunication Technology and Management
- Kusuma School of Biological Sciences
- School of Interdisciplinary Research
- School of Public Policy

CENTRES

- Centre for Applied Research in Electronics
- Centre for Atmospheric Sciences
- Centre for Automotive Research and Tribology *(formerly ITMMEC)*
- Centre for Biomedical Engineering
- National Resource Centre for Value Education in Engineering
- Optics and Photonics Centre
- Centre for Rural Development and Technology
- Centre for Sensors, Instrumentation and Cyber-Physical Systems Engineering *(formerly IDDC)*
- Transportation Research and Injury Prevention Centre

INTERDISCIPLINARY RESEARCH PROGRAMMES

- Opto-Electronics and Optical Communication Research Programme
- VLSI Design Tools and Technology
2.3 Research and Innovation

IIT Delhi places strong emphasis on research and development, and innovation. Faculty members undertake research in the fields of their interest. Many postgraduate students and some undergraduate students are also involved in these activities, as the curriculum provides facilities for the same. While some research is funded by the Institute, majority of research activities/projects are funded by sponsoring agencies and/or industries. All projects funded by government agencies and some industry funded projects are managed through the Institute’s Industrial Research and Development (IRD) Unit. Innovative technology development and industrial outreach are also facilitated by the Foundation for Innovation and Technology Transfer (FITT), a non-profit society associated with IIT Delhi and located on the campus.

2.4 Collaborations

IIT Delhi is actively involved in collaborative programmes with industry, academia, and governments at the national and international level to remain at the forefront of scientific and technological developments and share knowledge for mutual benefit. The Institute has 108 ongoing International Memorandum of Understanding established with various organizations/institutions from countries worldwide. During the 2020-21 period, Institute has signed 16 International Memorandum of Understandings, including countries like the UK, Sweden, Norway, Germany, Israel, Malaysia, Belgium etc. In addition to this, The UQ-IITD Academy of Research office was inaugurated at IIT Delhi in January 2021. The Academy runs a joint PhD programme to support scholars across diverse discipline areas to deliver global impact. IITD and Hebrew University of Jerusalem, Israel signed a seed grant MoU to support collaborative & interdisciplinary education and research initiatives. The launch of the seed fund marks an important milestone in our efforts at partnering with the top international universities.

2.5 Student Exchange Programmes

IIT Delhi promotes the exchange of students with premier institutions in India and abroad at UG, PG, and Ph.D. levels. At the international level, the exchange programme is ongoing with institutions across various countries, including UK, France, Germany, Taiwan, Canada, Denmark, Sweden, etc. Our Student exchange programmes foster global experiential learning outcomes for students, staff & faculty and enable students to study abroad at one of our university’s partner institutions. Studying abroad provides opportunities for personal growth and development by gaining self-confidence and life experience. Students visit foreign universities under our numerous student exchange programmes, and students from different foreign universities also visit IITD for a semester or full academic year. Under Erasmus+ Mobility Programme, IITD students can apply for Erasmus+ scholarships either by applying directly to the course coordinator or through an exchange. Erasmus+ offers short-term mobility to European universities from other parts of the world for students, researchers, and staff. This two-way mobility allows students
to study in a foreign university for 3-12 months. International Linkage Degree Program (ILDP) offers an Internship and Study Abroad Programme at Hiroshima University. This program provides the opportunity to join hands-on research activities in laboratories or some courses offered at HU.

2.6 Academic Programmes

IIT Delhi offers a variety of academic programmes for students with a wide range of backgrounds leading to the degrees listed below:

Doctor of Philosophy (Ph.D.):

All Departments, Centres and Schools offer Ph.D. programmes.

Master of Technology (M.Tech.):

- M.Tech. in Engineering Analysis and Design
- M.Tech. in Chemical Engineering
- M.Tech. in Molecular Engineering: Chemical Synthesis & Analysis
- M.Tech. in Geotechnical and Geoenvironmental Engg.
- M.Tech. in Rock Engg. and Underground Structures
- M.Tech. in Structural Engineering
- M.Tech. in Water Resources Engineering
- M.Tech. in Construction Engineering and Management
- M.Tech. in Construction Technology and Management
- M.Tech. in Environmental Engineering and Mgmt.
- M.Tech. in Transportation Engineering
- M.Tech. in Computer Science and Engineering
- M.Tech. in Energy & Environment Technologies and Management
- M.Tech. in Renewable Energy Technologies and Mgmt.
- M.Tech. in Communications Engineering
- M.Tech. in Computer Technology
- M.Tech. in Control and Automation
- M.Tech. in Integrated Electronics and Circuits
- M.Tech. in Power Electronics, Electrical Machines and Drives
- M.Tech. in Polymer Science and Technology
- M.Tech. in Materials Engineering
- M.Tech. in Power Systems
- M.Tech. in Mechanical Design
- M.Tech. in Industrial Engineering
- M.Tech. in Production Engineering
- M.Tech. in Thermal Engineering
- M.Tech. in Applied Optics
- M.Tech. in Solid State Materials
- M.Tech. in Fibre Science and Technology
- M.Tech. in Textile Engineering
- M.Tech. in Textile Chemical Processing
- M.Tech. in Radio Frequency Design and Technology
- M.Tech. in Electric Mobility
- M.Tech. in Atmospheric-Oceanic Science & Technology
- M.Tech. in Biomedical Engineering
- M.Tech. in Energy Studies
- M.Tech. in Cyber Security
- M.Tech. in Industrial Tribology and Maintenance Engg.
- M.Tech. in Instrument Technology
- M.Tech. in Optoelectronics and Optical Communication
- M.Tech. in Telecommunication Technology and Mgmt.
- M.Tech. in VLSI Design Tools and Technology
Master of Science (Research) (M.S.(R)):
» M.S. (R) in Amar Nath and Shashi Khosla School of Information Technology
» M.S. (R) in Applied Mechanics
» M.S. (R) in Automotive Research and Tribology
» M.S. (R) in Bharti School of Telecommunication Technology and Management
» M.S. (R) in Biochemical Engineering and Biotechnology
» M.S. (R) in Chemical Engineering
» M.S. (R) in Civil Engineering
» M.S. (R) in Computer Science and Engineering
» M.S. (R) in Energy Science and Engineering
» M.S. (R) in Electrical Engineering
» M.S. (R) in Mechanical Engineering
» M.S. (R) in Materials Science and Engineering
» M.S. (R) in Kusuma School of Biological Sciences
» M.S. (R) in VLSI Design Tools and Technology
» M.S. (R) in Sensors, Instrumentation and Cyber-Physical Systems Engineering

Masters of Business Administration (M.B.A):
» M.B.A.
» M.B.A. (with focus on Telecommunication Systems Management)
» M.B.A. (with focus on Technology Management), (part-time evening programme)

Master of Design (M.Des.):
» M.Des. in Industrial Design

Masters of Science (M.Sc.):
» M.Sc. in Chemistry
» M.Sc. in Cognitive Science
» M.Sc. in Economics
» M.Sc. in Mathematics
» M.Sc. in Physics
Masters of Public Policy (M.P.P.)

Postgraduate Diploma
» P.G. D.I.I.T (Naval Construction)
 (for candidates sponsored by the Indian Navy)
» Joint P.G. Diploma in Visionary Leadership in Manufacturing (VLFM)
 (Jointly with NITIE Mumbai)

Dual Degree (B.Tech. and M.Tech.) :
» B.Tech. & M.Tech in Chemical Engineering
» B.Tech. & M.Tech in Computer Science and Engineering
» B.Tech. & M.Tech. in Mathematics and Computing

Bachelor of Technology (B.Tech.) :
» B.Tech. in Biochemical Engineering and Biotechnology
» B.Tech. in Chemical Engineering
» B.Tech. in Computer Science and Engineering
» B.Tech. in Civil Engineering
» B.Tech. in Electrical Engineering
» B.Tech. in Electrical Engineering (Power and Automation)
» B.Tech. in Energy Engineering
» B.Tech. in Engineering and Computational Mechanics
» B.Tech. in Material Engineering
» B.Tech. in Mathematics and Computing
» B.Tech. in Mechanical Engineering
» B.Tech. in Production and Industrial Engineering
» B.Tech. in Engineering Physics
» B.Tech. in Textile Technology

The details of these programmes are given under specific Departments, Centers and Schools in this Prospectus as well as in the Courses of Study 2021-2022.
3. ADMISSIONS

Admission to IIT Delhi is possible through various entrance examinations, like the Joint Entrance Examination (JEE), Graduate Aptitude Test in Engineering (GATE), Common Entrance Examination for Design (CEED), Common Admission Test (CAT) and Joint Admission Test in M.Sc. (JAM), for its various degrees and programmes.

3.1 Undergraduate Programmes

Admission to all Undergraduate Programmes listed in Chapter 2 are made through the Joint Entrance Examination (JEE) (Main and Advanced). For further information, please visit JEE website: http://jee.iitd.ac.in/

Visiting Studentship

A student, who is registered for an Engineering / Technology degree in a recognized Institute / University in India or abroad, is eligible for being considered as a visiting student at IIT Delhi, for a maximum period of 6 months / one semester. More details can be obtained from the Academic Section of the Institute.

Summer Research Fellowship

In order to expose students from other Engineering Colleges / Institutes to the ongoing research activities at IIT Delhi, Institute has introduced Summer Research Fellowship programme for undergraduate students from other engineering Institutes. IIT Delhi will offer fellowship or interns can also be supported from budget of sponsored / consultancy projects, through an outside fellowship (eg. KVPY, INSA, INAE, etc.) or institutional MoUs. Further details can be obtained from the Academic Section of the Institute.

Admission of UG students to PG programmes with advance standing

UG students of IIT Delhi with advance standing are eligible for admission to PG programmes at IIT Delhi. Details are given in the Courses of Study booklet.

3.2 Postgraduate Programmes

Procedure for admission: Applications are invited from candidates by advertising the programmes in March/ October every year. Subsequently, the candidates have to apply online as specified in the advertisements. In general, admission are made through the Graduate Aptitude Test in Engineering (GATE) for M.Tech. programmes, Common Entrance Examination for Design (CEED) for M.Des., Common Admission Test (CAT) for M.B.A. and, Joint Admission Test (JAM) for M.Sc. programmes. For detailed eligibility conditions and mode of selection, please see section 3.5 on page 16.

Admission to Ph.D. / M.S. (Research) programme is also possible any time during the year through Department Research Committee (DRC) / Centre Research Committee (CRC) / School Research Committee (SRC) with the approval of Dean, Academics. For further information / details, please visit the Institute website - www.iitd.ac.in

IIT DELHI FOLLOWS RESERVATIONS IN ADMISSIONS (BOTH UG AND PG) AND CHARGES FEES AS PRESCRIBED BY GOVERNMENT OF INDIA FROM TIME TO TIME.
Migration from one PG Programme to another PG Programme of the Institute

Provision exists for the PG students of the Institute to move from (i) M.Tech. / M.S. (R) to Ph.D., (ii) M.Tech. to M.S. (R), and (iii) M.S.(R) to M.Tech. The details of the provisions are available on the Institute website.

ADMISSION OF FOREIGN NATIONALS

- **International Ph.D. Fellowship Programme (IPFP):** IIT Delhi has announced the International Ph.D. Fellowship Programme (IPFP), as an effort to attract talented young minds globally. Under this programme, fellowships to international Ph.D. students are given at par with Indian students. (For more details and application process, please visit: http://intladm.iitd.ac.in)

- **Applicants under Cultural Exchange Fellowship Programme:** The foreign nationals desiring admission to a post-graduate programme (M.Sc. / M.Des. / M.Tech. / MBA / M.S. (Research) / M.P.P. / Ph.D.) at IIT Delhi under this Fellowship programme, are required to apply to the Indian High Commissions / Embassies, in their respective countries. After examining the case of the applicants, they will recommend / sponsor the names to the Indian Council for Cultural Relations (ICCR), New Delhi, which in turn, will recommend the applicants to this Institute.

- **Self-Financing Foreign Nationals:** Applications from foreign nationals for admission to the various postgraduate programmes (M.Sc. / M.Tech. / M.S. (Research) / M.Des. / M.B.A. / M.P.P. / Ph.D.) at the Institute are received directly by the Institute. Some of the Institute students admitted to M.Tech. / M.S.(R) / M.Des. will be selected for Institute Masters Scholarship Programme (IMSP). The details of such admissions are available on the Institute Website.

- **Students under Memorandum of Understanding:** Admission of foreign nationals to the various postgraduate programmes (M.Sc./M.Tech./M.S. (Research)/M.Des./M.B.A./M.P.P./Ph.D.) at the Institute will be made in accordance with the terms and conditions of the MoU agreed to between IIT Delhi and the Country/University/Institution concerned.

3.3 Joint Degree Programmes

IIT Delhi is actively pursuing Joint Degree Programmes at the doctoral level with the following internationally acclaimed institutions:

- IIT Delhi and University of Queensland (UQ) have launched a joint Ph.D. programme recently. Under the programme, Ph.D. students (from India, Australia and elsewhere) will be admitted. IITD/QU faculty will jointly formulate projects and Students will be jointly selected against these projects Students in this academy will spend 3 years at the parent institution and at least 1 year at the partner. Students who successfully complete all the requirements of the programme will be awarded a joint degree by both institutions. (For more details, please visit: https://www.uqidar.org)

- IIT Delhi and National Chiao Tung University (NCTU), Taiwan have initiated an Industry funded Joint Doctoral Degree Programme (JDP). An academic and student exchange will be developed through the JDP whereby
students who successfully complete all the requirements of the programme will be awarded a joint degree by both institutions. Students will be admitted at both institutions, at the time of joining or after they join the regular Ph.D. Programme. More details on this may be found on the IIT Delhi website.

3.4 Scholarships

UNDERGRADUATE PROGRAMMES

Institute Merit-cum-Means (MCM) Scholarships
The Institute offers Merit-cum-Means scholarships to under-graduate students in engineering and technology. These scholarships are offered to about 25% of the students. The present value of Merit-cum-Means scholarship is ₹1000/- per month for General/OBC/EWS students and the recipient is exempted from paying tuition fee.

Institute Merit Prizes and Certificates
The Institute offers Merit prizes and Certificates to the top 7% of the students of each 4-year B.Tech., and 5-year Dual Degree programmes each semester up to the 8th / 10th Semester. The value of merit prize is ₹2500/-.

Institute Free Studentship-U.G.
The Institute offers free studentship to 10% of the students on the basis of means alone.

Scholarship provision for SC, ST & PD students: Tuition fee exemption is admissible to all SC / ST/PD students irrespective of their parents'/ guardians' income, Institute offers several other benefits to students from these categories.

Donor Scholarships: There are several other scholarships in operation at the Institute. These scholarships have been established by grants from individuals, trusts and organizations.

POSTGRADUATE PROGRAMMES

M.Sc. / M.P.P. Programmes
Merit-cum-Means scholarship of ₹1,000/- per month and tuition fee waiver are permissible to M.Sc. students to the extent of 25% of the sanctioned strength as per Institute rules. Only those students are eligible whose parents' gross income is up to ₹4.5 lac per annum for all categories of students / as per govt. orders as applicable.

M.Tech., M.S. (Research) and M.Des. Students: The Institute does not award any scholarship to the students of M.Tech., M.S. (Research), and M.Des. programmes. However, a scheme for financial assistance is in operation. Apart from the teaching/research assistantships, there are a number of fellowships and scholarships instituted by industries and individuals for such students.

Ph.D. Students: Although the Institute does not award any scholarship, a scheme for the award of Teaching/Research Assistantship for providing financial assistance to the students exists. Under this scheme, those students, who are admitted on full-time basis, are offered Teaching/Research Assistantship, provided they are not getting any other equivalent fellowship.
3.5 Admission to Postgraduate Programmes

<table>
<thead>
<tr>
<th>Degree</th>
<th>Status</th>
<th>Minimum Eligibility for Admission*</th>
<th>Selection basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc.</td>
<td>Full Time</td>
<td>At least 55% aggregate marks or 5.5 CGPA/CPI out of 10 without rounding-off (taking into account all subjects including languages and subsidiaries, all years combined) for General/OBC (Non Creamy Layer)/EWS category candidates (taking into account all subjects, including languages and subsidiaries, all years combined) in the qualifying degree. For Candidates with letter grades / CGPA on other scales, the equivalence will be decided by the Institute. For M.Sc. (Chemistry), Bachelor’s degree with Chemistry as a subject for three years/six semesters and Mathematics at (10+2) level. For M.Sc. (Mathematics), Bachelor’s degree with Mathematics as a subject for at least two years/four semesters. For M.Sc. (Physics), Bachelor’s degree with Physics as a subject for two years/four semesters and Mathematics for at least one year/two semesters. For M.Sc. (Cognitive Science), Qualifying Degree: B.A./B.Sc./B.Com./B.M.S./B.Tech./B.E./B.Stat./B.Math. or equivalent</td>
<td>JAM (for Maths, Chemistry, Physics, Economics) COGJET/GATE/ JAM/NET & interview (for Cognitive Science)</td>
</tr>
<tr>
<td>M.Tech.</td>
<td>Full Time</td>
<td>B.E./B.Tech. / M.Sc. or equivalent with (a) CGPA 6.00 on a 10 point scale or 60% marks in aggregate for General/OBC (Non Creamy Layer)/EWS Category with valid GATE score. *B.Tech. from IITs with CGPA of 8.00 without GATE are also eligible for admission. AMIE / Grad. IETE are eligible, subject to condition at Note 7.</td>
<td>GATE</td>
</tr>
<tr>
<td></td>
<td>Part Time</td>
<td>B.E./B.Tech. / M.Sc. or equivalent in relevant field with (a) CGPA 6.00 on a 10 point scale or 60% marks in aggregate for General/OBC (Non Creamy Layer)/EWS Category and minimum experience (as per table 3.4.1). Must submit No Objection Certificate from employer (as per Note 4) Organisation should be located within 50km. of IIT Delhi. Also see Note. 6.</td>
<td>Written test and/or interview</td>
</tr>
<tr>
<td></td>
<td>Sponsored Full Time</td>
<td>Same as for M.Tech. part time requirements and Sponsorship Certificate from the employer as per Notes 4 and 5 respectively.</td>
<td>-Do-</td>
</tr>
<tr>
<td>M.Des.</td>
<td>Full Time</td>
<td>B.E./B.Tech. / B.Des. / B.Arch. or equivalent in relevant field with CGPA 6.00 on 10 point scale or 60% marks in aggregate and a valid CEED score.</td>
<td>CEED and interview</td>
</tr>
<tr>
<td>M.B.A.</td>
<td>Full Time</td>
<td>Bachelor’s degree or equivalent (Minimum 3 years after 10+2) with CGPA of 6.00 on 10 point scale or 60% marks in aggregate for General/OBC (Non Creamy Layer)/EWS Category.</td>
<td>CAT</td>
</tr>
<tr>
<td></td>
<td>Full Time</td>
<td>Bachelor’s degree in Engg. / Technology / Architecture / Pharmacy / B.Sc. Agri. Engg. (Minimum 4 year after 10+2) or Bachelor’s degree in any branch of Physical / Chemical / Mathematical Sciences like Physics / Chemistry / Mathematics Statistics / Computer Application / Electronics Sciences / Environmental Science or Computational / Information science / Agriculture or Bachelor’s degree in Commerce / Economics / CA / ICWA with CGPA of 6.00 on 10 point scale or 60% marks in aggregate for General/OBC (Non Creamy Layer)/EWS Category.</td>
<td>CAT</td>
</tr>
<tr>
<td></td>
<td>Part Time (evening)</td>
<td>Same as M.B.A. full-time (Telecommunication Systems Management) requirements and two-years experience.</td>
<td>Selection on Performance (SoP) and interview</td>
</tr>
<tr>
<td></td>
<td>with focus on Technology Mgmt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree</td>
<td>Status</td>
<td>Minimum Eligibility for Admission</td>
<td>Selection basis</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| M.S. (R) | Full Time/Part Time sponsored | - For the currently registered students in Centrally Funded Technical Institutes (CFTIs) having CGPA of 8.0 or above (on a 10 point scale) at the end of 6th semester or later, in B.Tech./B.E./Integrated M.Tech./Integrated M.Sc. programmes (or any other programme of minimum four years duration, admission to which is on the basis of JEE), the requirement of GATE/National Examination is waived for consideration of admission the M.S.(R) programme in IIT Delhi. Moreover, such students must have obtained CGPA of 8.0 or above at the time of graduation (and before they formally register for the M.S.(R) programme).
- The requirement of GATE/National Examination is waived for consideration for admission to the M.S.(R) programme for all graduated of CFTIs with a B.Tech./B.E./Integrated M.Sc. (or any other programme of minimum four years duration, admission to which is on the basis of JEE) with CGPA of 8.0 or above at the time of graduation.
- The Requirement of GATE/National Examination is also waived for M.A. or M.Sc. graduated from IITs with CGPA 8.0 or above.
However, if a candidate admitted to M.S.(R) programme following the above criterion wanted to convert to M.Tech. programme, he/she should also meet the shortlisting criteria of the M.Tech. programme, in addition to the conversion criteria (including requirement, if any, of a valid examination in GATE/National Examination). | Same as the corresponding M.Tech. requirements. |
| | Full Time/Part Time | Same as the corresponding M.Tech. requirements | |
| | | • For the currently registered students in Centrally Funded Technical Institutes (CFTIs) having CGPA of 8.0 or above (on a 10 point scale) at the end of 6th semester or later, in B.Tech./B.E./Integrated M.Tech./Integrated M.Sc. programmes (or any other programme of minimum four years duration, admission to which is on the basis of JEE), the requirement of GATE/National Examination is waived for consideration of admission the Ph.D. programme in IIT Delhi. Moreover, such students must have obtained CGPA of 8.0 or above at the time of graduation (and before they formally register for the Ph.D. programme).
• The requirement of GATE/National Examination is waived for consideration for admission to the Ph.D. programme for all graduates of CFTIs with a B.Tech./B.E./Integrated M.Sc. (or any other programme of minimum four years duration, admission to which is on the basis of JEE) with CGPA of 8.0 or above at the time of graduation.
• The Requirement of GATE/National Examination is also waived for MA or M.Sc. graduated from IITs with CGPA 8.0 or above. | |
| | | | Written test and/or interview |
| M.P.P. | Full Time | Five-year bachelor's degree such as M.B.B.S., B.A. - L.L.B. (Hon.), B.Arch. or equivalent; four-year bachelor's degree such as B.Tech., B.Sc. (Ag.), B.V.Sc., or equivalent; and post-graduate degrees such as M.A., M.Sc., M.Phil., Integrated M.Sc., Integrated M.Sc./M.A., M.Tech. or equivalent. | Written test and/or interview |
| Ph.D. | Full Time | Master degree in Engineering/Technology or master degree in Science/Humanities or equivalent in relevant discipline with CGPA 6.00 on 10 point scale or 60% marks in aggregate for General/OBC/EWS category. Full time students who do not possess M.Tech. or equivalent degree are required to have a valid GATE/CEED* Score or UGC/CSIR/DBT/ICMR/INSPIRE fellowship examination for Sciences/Humanities and Social Sciences disciplines. OR B.Tech. or equivalent with CGPA of 7.0 on a 10 point scale or 70% aggregate marks and qualified GATE or UGC/CSIR/DBT/ICMR/INSPIRE fellowship examination for Biomedical Engg., candidates having M.B.B.S. with 60% marks or more are eligible provided they have qualified ICMR. The Candidates having Postgraduate degree of Doctor of Medicine (MD) / Master in Surgery (MS) with 60% marks or more after MBBS will also be eligible for admission to Ph.D. Programme in CBME.
• For the currently registered students in Centrally Funded Technical Institutes (CFTIs) having CGPA of 8.0 or above (on a 10 point scale) at the end of 6th semester or later, in B.Tech./B.E./Integrated M.Tech./Integrated M.Sc. programmes (or any other programme of minimum four years duration, admission to which is on the basis of JEE), the requirement of GATE/National Examination is waived for consideration of admission the Ph.D. programme in IIT Delhi. Moreover, such students must have obtained CGPA of 8.0 or above at the time of graduation (and before they formally register for the Ph.D. programme).
• The requirement of GATE/National Examination is waived for consideration for admission to the Ph.D. programme for all graduates of CFTIs with a B.Tech./B.E./Integrated M.Sc. (or any other programme of minimum four years duration, admission to which is on the basis of JEE) with CGPA of 8.0 or above at the time of graduation.
• The Requirement of GATE/National Examination is also waived for MA or M.Sc. graduated from IITs with CGPA 8.0 or above. | Written test and/or interview |
<p>| | Part Time | Same as for Ph.D. full time and minimum experience (as per table 3.4-1) and No Objection from the employer. | Written test and/or interview |
| *CEED score is only for the Department of Design |</p>
<table>
<thead>
<tr>
<th>Sponsored Full Time or Part Time</th>
<th>Same as for Ph.D. full time and Certificate from employer (as per Note 8.) No GATE/National examination required (Note.11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Time Foreign National Posted in Delhi</td>
<td>Same as for full-time Subject to conditions stipulated in Note 12.</td>
</tr>
<tr>
<td>PMRF</td>
<td>Under the Prime Minister's Research Fellowship (PMRF) Scheme, certain number of fellowship are allocated to the Institute. While PMRF fellows are governed by the same academic rules as any other research scholar, the selection of PMRF fellows is through a centralized process across all IITs/ IISc. (For more details, please visit: https://pmrf.in)</td>
</tr>
<tr>
<td>IITD - QU Joint Ph.D.</td>
<td>For admission in QU and IITD joint Ph.D. programme. (please visit: https://www.uqidar.org)</td>
</tr>
<tr>
<td>IITD - NCTU Joint Ph.D.</td>
<td>Under this programme, each Institute would admit students to its HOME Institute as per their own criteria. Students would have to apply for admission to the HOST Institute when they have identified Co-Supervisor. HOST Institute will select as per its own criterion. It is proposed that students apply to the Host Institute for admission within 12 months of their admission to the HOME Institute.</td>
</tr>
</tbody>
</table>

NOTES:

1. 15% seats are reserved for SC candidates, 7.5% for ST candidates, 27% for OBC (non-creamy layer) candidates and 10% for EWS candidates.

2. For SC, ST and PD candidates, relaxation of 5% marks or 0.5 CGPA (on ten point scale) in the qualifying degree will be provided. Relaxation in CGPA to 5.50 or in marks to 55% in the minimum qualifying criteria may be permitted to those General / OBC / EWS candidates who possess M.A. Degree in English for admission to Ph.D. programme in the Department of Humanities & Social Sciences.

3. 5% of the seats allocated for full-time students, excluding sponsored students, students drawing assistantship from other sources and foreign students are reserved for Persons with Disability (PD) for admission to various Postgraduate Programmes. The candidates selected against the quota for PD be placed in the appropriate category viz. SC / ST / OBC / EWS / General Candidates depending upon the category to which they belong.

4. No Objection Certificate should state that the candidate is permitted to pursue studies on part time basis and he/she will not be transferred to any other place during the period of study.

5. Sponsorship letter (on letterhead of the sponsoring organization) should state that period of study will be treated as on duty with usual salary/allowances and he/she would be fully relieved and granted study leave for the period of studies.

6. For part-time MBA programme, the classes are held in the evening.

7. Candidates with AMIE/grad. IETE fulfilling the minimum eligibility criteria can be considered for admission as visiting students for completing 24 earned credits of undergraduate courses as prescribed by the respective programme after which they have to appear for GATE and apply afresh for admission to M.Tech. programme.
8. The letter should state that he/she is permitted to pursue studies on part time basis and that
 (i) his/her official duties will permit sufficient time for research,
 (ii) facilities for research are available at the place of work,
 (iii) he/she will be permitted to reside at the Institute for at least 6 months* during his/her registration for the
 degree (not applicable if organization is within 50 km of IIT Delhi).

*If the course credit requirement recommended by a Deptt./Centre/School is more than 12, then the residency
requirement for part time Ph.D. Candidates holding degrees from other Institutes/Universities and working in
organisations outside Delhi will be 12 months.

9. Full-time applicants coming on study leave must show proof of at least 3 years (2 years in the case of M.Tech.
degree holders) study leave when appearing for the interview.

10. CGPA is Cumulative Grade Point Average. For the purpose of admission at IIT Delhi, the conversion factor of 10
 would be used for converting percentage to CGPA (divide by 10). However, this conversion to CGPA will only
 be applied in case of the primary method of evaluation followed in the graduating institution of the candidate
 seeking admission is percentage marks.

 For CGPA with scales of other points, a linear interpolation will be used i.e.

\[
g = \frac{G_x \times 10}{X}
\]

where G is the GPA on 10 points scale and G_x is the GPA on 'x' point scale. Conversions worked out using the
above formula for some scales are given in the following table:

<table>
<thead>
<tr>
<th>%</th>
<th>CGPA 10</th>
<th>CGPA 9</th>
<th>CGPA 6</th>
<th>CGPA 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5</td>
<td>4.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>5.5</td>
<td>4.95</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>5.4</td>
<td>3.6</td>
<td>2.4</td>
</tr>
<tr>
<td>70</td>
<td>7</td>
<td>6.3</td>
<td>4.2</td>
<td>2.8</td>
</tr>
<tr>
<td>75</td>
<td>7.5</td>
<td>6.75</td>
<td>4.5</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>7.2</td>
<td>4.8</td>
<td>3.2</td>
</tr>
<tr>
<td>90</td>
<td>9</td>
<td>8.1</td>
<td>5.4</td>
<td>3.6</td>
</tr>
</tbody>
</table>

The minimum prescribed 60/55/50% marks in aggregate (of all the years/Semesters of the qualifying
examinations) is calculated by IIT Delhi as per the following example:-

<table>
<thead>
<tr>
<th></th>
<th>1st semester</th>
<th>%</th>
<th>2nd semester</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>250/400</td>
<td>62.50</td>
<td>290/400</td>
<td>72.50</td>
</tr>
<tr>
<td>2nd year</td>
<td>205/400</td>
<td>51.25</td>
<td>280/400</td>
<td>70.00</td>
</tr>
<tr>
<td>3rd year</td>
<td>210/400</td>
<td>52.50</td>
<td>350/400</td>
<td>87.50</td>
</tr>
<tr>
<td>4th year</td>
<td>240/400</td>
<td>60.00</td>
<td>150/400</td>
<td>75.00</td>
</tr>
<tr>
<td>Total</td>
<td>905/1600</td>
<td>60.00</td>
<td>1070/1400</td>
<td>75.00</td>
</tr>
</tbody>
</table>

- Aggregate (%) (of all the years/semesters) 1975/3000 = 65.83%
11. Sponsored (Full-time)/Part-time candidates are not required to possess GATE/CEED score for admission to postgraduate/Ph.D. programmes.

12. The registration of foreign nationals, posted in Delhi, to Ph.D. Programme on part-time basis can be made on the terms and conditions as under :-

(i) The admission will be subject to production of Research Visa for study at IIT Delhi.

(ii) The candidate should satisfy all the requirement as applicable to part-time scholars.

Table 3.5.1 : Experience required for admission to part-time Ph.D./M.Tech./M.S.(R) Programmes.

<table>
<thead>
<tr>
<th>For admission to part-time programme</th>
<th>Qualifications</th>
<th>Work Experience (Post Qualification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D.</td>
<td>M.E./M.Tech./M.S.(R)/M.D. or Equivalent</td>
<td>Nil</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>B.E./B.Tech./M.Sc./M.A./M.B.A./MBBS or equivalent, from CFTIs/Central Universities</td>
<td>1 Year</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>B.E./B.Tech./M.Sc./M.A./M.B.A./MBBS or equivalent, and working in IIT Delhi* (Project or Regular) *Through proper channel</td>
<td>1 Year</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>B.E./B.Tech./M.Sc./M.A./M.B.A./MBBS or equivalent, from institutions other than CFTIs/Central Universities</td>
<td>2 Years</td>
</tr>
<tr>
<td>M.Tech./M.S.(R)</td>
<td>B.E./B.Tech./M.Sc. or equivalent, from CFTIs/Central Universities</td>
<td>6 Months</td>
</tr>
<tr>
<td>M.Tech./M.S.(R)</td>
<td>B.E./B.Tech./M.Sc. or equivalent, and working in IIT Delhi* (Project or Regular) *Through proper channel</td>
<td>6 Months</td>
</tr>
<tr>
<td>M.Tech./M.S.(R)</td>
<td>B.E./B.Tech./M.Sc. or equivalent from institutions other than CFTIs/Central Universities</td>
<td>1 Year</td>
</tr>
</tbody>
</table>

3.6 Medals and Prizes

IIT Delhi also awards numerous medals and prizes to the students on the basis of examination/project and all-round performance in sports, co-curricular activities, etc. At present there are around ninety such medals and awards in operation.
4. FEES

The fees payable by 2021 entry year students are given in Table below

4.1 Fees Payable by Students of the Entry Year 2021

<table>
<thead>
<tr>
<th>Programme</th>
<th>Tuition Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Tech./Dual degree*</td>
<td>₹ 1,00,000**</td>
</tr>
<tr>
<td>M.Sc.</td>
<td>₹ 5,000</td>
</tr>
<tr>
<td>M.Tech., M.S.(R), M.Des. (Receiving Institute / Project Assistantship or Teaching position holders) / M.P.P.</td>
<td>₹ 10,000</td>
</tr>
<tr>
<td>M.Tech. / M.S.(R) / M.P.P./M.Des. / DIIT (Sponsored, FT / PT & Non-teaching position holders)</td>
<td>₹ 50,000</td>
</tr>
<tr>
<td>Ph.D. (Full Time)</td>
<td>₹ 5,000</td>
</tr>
<tr>
<td>Ph.D. (Part Time)</td>
<td>₹ 10,000</td>
</tr>
<tr>
<td>M.B.A. Self-financing</td>
<td>Full Time</td>
</tr>
<tr>
<td></td>
<td>₹ 2,40,000</td>
</tr>
<tr>
<td></td>
<td>Part Time</td>
</tr>
<tr>
<td></td>
<td>₹ 1,80,000</td>
</tr>
<tr>
<td>Foreign National®</td>
<td>SAARC Countries</td>
</tr>
<tr>
<td>B.Tech./Dual Degree</td>
<td>Non SAARC Countries</td>
</tr>
</tbody>
</table>

*The fee for the foreign nationals joining PG/Ph.D. programme will be at par with Indian students.

Other charges (to be paid every semester alongwith Tuition Fee)

<table>
<thead>
<tr>
<th>A Institute Fees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination fees</td>
<td>₹ 1,000</td>
</tr>
<tr>
<td>Registration / Enrolment fees</td>
<td>₹ 500</td>
</tr>
<tr>
<td>Gymkhana</td>
<td>₹ 1,000</td>
</tr>
<tr>
<td>Medical fees</td>
<td>₹ 500*</td>
</tr>
<tr>
<td>Internet and computer access fee</td>
<td>₹ 750</td>
</tr>
<tr>
<td>Transport charges</td>
<td>₹ 100*</td>
</tr>
<tr>
<td>Total</td>
<td>₹ 3,850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostel seat rent</td>
<td>₹ 7,500</td>
<td>₹ 7,500</td>
<td>₹ 10,000</td>
</tr>
<tr>
<td>Amenity charges</td>
<td>₹ 500</td>
<td>₹ 500</td>
<td>₹ 500</td>
</tr>
<tr>
<td>Total</td>
<td>₹ 8,000</td>
<td>₹ 8,000</td>
<td>₹ 10,500</td>
</tr>
</tbody>
</table>
C. Other Payments

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Distress Fund Scheme (each semester)</td>
<td>300</td>
</tr>
<tr>
<td>Insurance Scheme (yearly)</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
</tr>
</tbody>
</table>

D. One Time payment to be paid at the time of admission

Non Refundable

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission fees</td>
<td>1,500</td>
</tr>
<tr>
<td>Student welfare fund</td>
<td>500</td>
</tr>
<tr>
<td>Modernization fees</td>
<td>1,000</td>
</tr>
<tr>
<td>Benevolent fund</td>
<td>300</td>
</tr>
<tr>
<td>Alumni fees</td>
<td>1,500</td>
</tr>
<tr>
<td>Training and Placement charges</td>
<td>1,000</td>
</tr>
<tr>
<td>Total</td>
<td>5,800</td>
</tr>
</tbody>
</table>

Refundable

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution security deposit</td>
<td>3,000</td>
</tr>
<tr>
<td>Library security deposit</td>
<td>3,000</td>
</tr>
<tr>
<td>Total fees payable at the time of admission</td>
<td>6,000</td>
</tr>
</tbody>
</table>

1. Total other charges payable for B.Tech., Dual Degree, M.Sc. and MBA (with hostel) ₹24,450, without hostel ₹16,450.

NOTE:

1. #The tuition fee in 9th semesters and later will be ₹5,000/- per semester for Dual-degree programmes.
2. *Medical fee and transport charges are applicable to full time students only.
3. **1/3rd** of tuition fee for student with family income between ₹1 lac to ₹5 lac per annum. Other students (other than SC, ST & PD) whose family income is less than ₹1 lac per annum will get 100% tuition fee exemption.
4. Thesis fee for M.S.(R) and Ph.D. is ₹500/- and ₹5,000/- respectively and shall be payable at the time of submission of thesis.
5. All SC, ST, PD students will get 100% tuition fee exemption.
6. Hostel is available only to full time students subject to availability.
7. Messing and electricity charges will be calculated on completion of each semester and will be notified separately.
4.2 Foreign National Visiting Students

Following are the tuition fees per semester, chargeable from Self-financing foreign National Students including those seeking admission as visiting students:

i) US $ 1,000 for SAARC Countries.

ii) US $ 2,000 for other Countries.

4.3 Mode of Payment

(a) Institute dues:

All Institute dues are to be paid through State Bank of India I-collect facility.

Payment by challan slip is allowed only to the following:

(i) students who have taken loan from a bank (for educational purposes), or

(ii) students who are holders of a scholarship from outside sources who directly send cheque(s) for fees in the name of the Institute.

(b) Mess dues: Payment Portal for payment of Hostel Mess Fees:-

Please click on the following URL - https://ecampus.iitd.ac.in/scorner

4.4 Deadlines for Payment

(a) Institute dues:

(i) All Institute dues are to be paid in full before the last date for Late Registration (this is typically one week after the first day of classes)

(ii) Students who do not pay the required amount by this date, or those who make partial payments, shall have their registration cancelled. Registration will be restored on payment of fees and a fine as stipulated in the Institute rules.

(iii) In case of new entrants, the fees are to be paid on the day of registration at the time of joining the Institute.

(b) Mess dues: All Mess dues are to be paid on or before the allotment of hostels.

4.5 Refund of Fees

The whole amount of fees/other charges deposited by the students will be refundable after deduction of ₹1,000/, if the students do not join the programme after paying the dues and leave the Institute by applying for refund on or before the date of registration. No refund of fees will be permissible to students who have registered for the programme but leave immediately thereafter. In such cases, only caution money will be refunded.
5. STUDENT LIFE ON CAMPUS

The ambience of student life and activities on the campus is to provide an invigorating and creative environment which promotes independent thinking and introspection and leads the young students to become more aware of the consequence of their own actions.

Excellent facilities for accommodation to a large number of students, co-curricular activities, sports and games recreation, shopping, etc., are provided to the students on campus. Special efforts are also made to promote and strengthen student-teacher interaction. Students Counselling Service has been set up to assist and morally support students in their initial adjustment, and also to deal with any difficulties, they may have during their stay at the Institute.

5.1 Board for Hostel Management

1. The Board for Hostel Management (hereinafter called the BHM) is a constituent body of the Student Affairs Council (S.A.C.), as recognized under Article III-A2 of the S.A.C. Constitution.

2. The Board for Hostel Management shall be responsible for policy formulation, co-ordination and review of all matters relating to management of the Halls of Residence.

3. The Board shall be subject to all decisions, rules and regulations which may be laid down from time to time by the Student Affairs Council and the Authorities of the Institute.
Halls of Residence
There are eleven boys’ hostels and two girls’ hostels. The boys’ hostels are Nilgiri, Karakoram, Aravali, Jwalamukhi, Satpura, Zanskar, Kumaon, Vindyachal, Shivalik, Girnar and Udaigiri. Kailiash and Himadri Hostels are for girls. Each Hostel is self-contained with amenities such as a reading room, an indoor games room, a lounge and a dining hall with mess, a computer room and TV in common room. All rooms have been provided with Internet facilities.

5.2 Student Affairs Council (SAC)
The Student Affairs Council is a joint student-faculty Senate committee to deal with overall policy formulation, coordination and review of student affairs, which are of non-academic nature.

The SAC co-ordinates the activities of the various student organizations, viz., Boards for Recreational and Creative Activities, Sports, Hostel Management, Students Publications and Student Welfare. It also works to promote the student interests and endeavors to create healthy traditions in campus life.

5.3 Co-curricular and Academic Interaction Council (CAIC)
The Co-curricular and Academic Interaction Council (CAIC) and its constituent bodies aim at maximal interaction between students and faculty, a good academic atmosphere and an efficient decision making process based on consultation; and through these it aims to promote an overall development of students for the maximum realization of their potential. The council is a joint committee of undergraduate students, postgraduate students and faculty that provides feedback to the Board of Academic Programmes on all academic and allied matters. CAIC has following constituent clubs:

Robotics Club
The Club strives to stimulate interest in robotics among the students of the institute. Besides making a serious endeavour to spread knowledge on Robotics and its diverse applications, it also stands by the subtle acronym of TEAM - ‘Together Everyone Achieves More’.

Axlr8r Club
Axlr8r Formula Racing is a group of undergraduate students from different departments who design and fabricate open wheel electric formula race cars. So far, the club has designed 3 electric vehicles and 5 combustion vehicles. It aims to promote e-mobility in India and strive to revolutionize the future of electric mobility in India.

Aeromodelling Club
The Club is a group of aeromodelling and aviation enthusiasts with an innate desire for flying. Aeromodelling is a work of art where engineering and creativity synergize in developing sophisticated flying systems.
Physics and Astronomy Club

This Club is a group of Physics and Astronomy enthusiasts who organise lecture sessions, discussions and observation sessions and competitive events throughout the year.

Devclub

DevClub strives to spread applied computer science culture among the students of the Institute. Club combines the likes of coding, web development, android app development and much more to come up with new and innovative, out-of-the-box solutions.

Economics Club

The vision of the Economics club is to promote knowledge on economics & financial education, training & imparting practical skills, and introducing people to economic, in a way that gets them interested to pursue the area further.

iGem Club

The International Genetically Engineered Machine (iGEM) club aims to solve real-world challenges by building genetically engineered biological systems to advance research in synthetic biology.

5.4 Co-curricular Activities

IIT Delhi provides a full measure of opportunity to its students for co-curricular pursuits. Through several students directed activities a student participates actively in the many-sided life of the Institute community. He / She pursues his / her intellectual and aesthetic horizons far beyond the realm of the classroom experience, and he / she expands his / her interests and forms new relationships.

5.5 The Students’ Activity Centre

The Students’ Activity Centre is the nerve centre of all student activities on the Campus. With a moat on one side and a high stone wall on the other, the Students’ Activity Centre recalls to the visitors memories of an ancient fort. The Centre comprising a Club Building, Gymnasium Hall, Swimming Pool, Amphitheater, Music Rooms, Robotics Room, and Hobbies Workshop, caters to various hobbies of the Students. They have a place to paint, to sculpt or to tinker with the radio.

There are committee rooms where they can hold formal or informal meetings and a large marble-floored hall for exhibitions. On the first floor of the Centre, students have facility to play billiards, table tennis etc.

5.6 Students’ Canteens

There are canteens for the students in the Hostel area just opposite to Aravali Hostel, in Himadri Hostel and adjacent Kumaon Hostel and the others located in front of Library across the road. The Hostel area canteen is open normally
from 4 p.m. till midnight. The other canteens run during the Institute working hours. Working of these canteens is looked after by the Canteen Cell of the Board of Hostel Management. There are Coffee and Cold drinks kiosks also in the Institute.

5.7 Stationery Shop/Telephone Booths

For the benefit of the student community, there is a stationery shop situated in the academic area. A number of Photocopy facilities and STD/ISD/PCO facilities are available in all the Hostels.

5.8 Board for Sports Activities (BSA)

Playing sports helps us learn good habits and discipline. It teaches us invaluable life lessons including striving towards a goal, overcoming hurdles, coping with defeat, cherish growth opportunities and being humble in victory. Sports is a form of education and it gradually inculcates resilience, leadership qualities and the ability to work in a team. In addition, facilitates recreation and fosters social harmony and emotional health. Board for Sports Activities (BSA) is a constituent body of the Student Affairs Council and is responsible for the coordination of the various sports activities in the Institute. It ensures that adequate sports facilities are available to the community and provides a forum for the students and staff to discuss and formulate policy towards the betterment of sports activities on the campus.

Our facilities include, a cricket field with four turf wickets, four flood-lit cricket practice pitches, flood-lit hockey and football grounds, four flood-lit volleyball and two basketball courts, eight flood-lit tennis courts (four synthetic and four clay courts), tennis practice wall, two squash courts, one badminton hall, two table tennis halls with synthetic flooring, one weight-lifting hall, an Olympic size swimming pool, kid’s pool, two multi-gyms, a flood-lit stadium with 400 meters athletics track, flood-lit jogging track and ancillary arrangements for all the games. Construction of a new multipurpose hall (indoor sports complex) with additional facilities for badminton, table tennis and squash courts is nearing its completion. A team comprising of Sports Officer, Deputy Sports Officer, Assistant Sports Officer, part-time coaches and ground staff consultation with President (BSA), Vice President (BSA) and Game Presidents help the students in their regular sporting activities ensuring maintenance and proper utilization of facilities.

The Institute lays considerable emphasis on student’s participation in various outdoor and indoor games. Such activities take place almost throughout the year. BSA is also responsible for conduction the NSO programme for the incoming undergraduate students (B.Tech.) who thereby get an opportunity to try different sporting activities that our Institute has to offer. The students are encouraged to take part in the Fresher’s events conducted for incoming (first year) students, friendly matched with local colleges, inter-hostel events, the Inter-collegiate event ‘Sportech’ and the annual Inter-IIT Sports Meet held every year in the month of December. To summarize, IIT Delhi has a very vibrant sporting atmosphere contributed to, not only by students but staff and faculty alike.
5.9 Board for Recreational and Creative Activities (BRCA)

The BRCA is the one-stop destination to get away with college stress and indulge in various recreational and creative activities. It gives a platform to nurture and showcase one's talent in co-curricular hobbies. The Showstopper is Rendezvous, our own cultural fest (one of the largest cultural festival in India) which sees glamourous pronites and competitions on a national level.

The board has a plethora of clubs serving the needs of the diverse IIT Delhi community. A few of them are briefed below:

Literary Club

The Literary Club aims to promote the growth of knowledge and encourage the IITD family to read together, for reading is knowledge and knowledge is power. The present team aims to take the Reading Circle to newer heights, and organise events for people to bond over.

Hindi Samiti

The importance of local languages is diminishing in urban areas. To nurture this culture, Hindi Samiti at IIT Delhi brings to you the different verticals, where participants can contribute, like Hindi Debates, Hindi Quizzes, Poetry and Stand-up Comedy and much more.

SPIC MACAY

Society for Promotion of Indian Classical Music and Culture Amongst Youth or SPIC MACAY is founded with an aim to introduce Indian culture and it’s beautiful art forms to the students. VIRASAT- the annual fest of SPIC MACAY sprawls over 3 weeks and compromises of performances and workshops in arts and crafts, theatre, films and yoga.

Wellness Club

Wellness Club aims at achieving holistic wellness of students by providing a supportive environment for the yoga, meditation and other wellness activities to develop an integration between the physical, social and emotional well-being of students. We motivate and empower students to fight against major challenges such as stress, use of harmful substances and loss of integrity, to become the best version of themselves.

5.10 Board for Students Publications (BSP)

Board for Student Publications is the electronic and print media body of the college, run almost entirely by students. It is involved in bringing out various publications and organizing events for nurturing the literary talent of the IITD community and carrying out journalistic activities.

At the beginning of the academic year, BSP releases a magazine called “Inception” which provides the incoming freshers with a glimpse of IITD life and gives them information about various avenues and opportunities. Apart
from this, BSP’s “Muse” is a magazine which provides an excellent forum for creative expression. The Board’s annual technical magazine, “Elemental”, is a technical compendium of interesting research ongoing in IIT or around the world. A new magazine called “Impulse”, a collection of short fiction written by students, was launched this year. Apart from its creative publications, the Board’s key area of focus remains its journalistic activities and bi-annual newsletter “Inquirer”. With interviews, detailed surveys and in-depth analyses of issues affecting the student community, the Board keeps track of all ongoing activities on campus and provides an interactive space for students, faculty and administration to debate relevant issues through its social media platforms and newly restructured website.

The BSP also organizes an annual literary festival, “Literati” which is recognized and appreciated as one of the best literary college festivals in North India. With workshops, competitive events and panel discussions featuring renowned authors and journalists, the Board aims to develop and sharpen the creative and media skills of the entire student community.

5.11 Board for Students Welfare (BSW)

The Board for Student Welfare, IIT Delhi is a student body set up with an intention to look after the Welfare of the Student Community. BSW has always been dedicated towards helping the Student Community in every aspect of life in IIT Delhi. The Board adheres to a principle of making itself the organisation of the Students, for the Students, and by the Students. The constituent bodies of BSW have to permanent committees viz., Operations Committee and Mentorship Committee.

The Operations Committee executes welfare activities in the institute to benefit the student community. It also provides assistance (financial and in-kind) to the students in need. The various activities include smooth induction of the Orientation process, setting up of various camps such as cycle camp, book camp etc., conducting informative sessions on Foreign exchange, Minor degree, MBA etc., and other activities throughout the year.

The Mentorship Committee of BSW executes & monitors all mentorship initiatives for IIT Delhi students. These include Mentorship of freshmen students, Alumni Mentorship, Academic Mentorship, Language Mentorship etc. On the commencement of one’s IITD life, every individual is provided with a mentor who is a trained & experienced senior student and is responsible for making the freshmen capable of making informed decisions in academic, extra-curricular & personal fronts by sharing unbiased knowledge & experiences.

BSW organises the very popular, socio-welfare fest of IIT Delhi, Speranza. Each year Speranza welcomes a huge crowd of students with great enthusiasm and is the first college festival to be organised in a new academic year. From Talk shows, workshops, to fun games and competitive events, Speranza has a wide spectrum of events taking place making them few of the most memorable days of IITD life.

BSW also runs a Student Cooperation Society (SCOOPS) which runs on a no profit-loss philosophy. Located near
Block I, its duty is to provide students access to buy good-quality subsidised stationary items, notebooks and related services.

Student Teacher Interaction Council (STIC) Dinner is another welfare activity carried on by BSW, to strengthen the Student-Teacher interaction, the foundation pillar of any Educational Institution.

Student Counselling Service (SCS) under BSW provides a confidential environment where a student can explore and express aspects of one’s self that may be painful or uncomfortable. The counsellor helps the students in gaining their own insights and making and acting on their own choices, thereby enabling them to resolve issues. BSW has also collaborated with YourDOST, which provides free online counselling services to all the IITD students.

The Office of Accessible Education (OAE) aspires to cater the needs of differently abled persons. Special assistance varying from academics to infrastructure requirements are taken care by the department. OAE works with PwD to help them connect and provides support using various technologies. Specific software, connections using OAE connect, awareness programmes have all contributed to addressing this issue.

5.12 National Service Scheme (NSS)

NSS IIT Delhi is the IITD chapter of the National Service Scheme, Institutionalized under the Ministry of Youth Affairs & Sports Government of India. The organisation’s sole aim is to motivate students at IIT Delhi to indulge in nation building activities through various events and projects which are aimed towards the benefit of people in and around IIT Delhi.

The student body works on a diverse range of social issues and has been categorized under four domains Education, Health, Environment and Society. More than 1000 students belonging to various disciplines and degrees actively volunteer in the projects and events organized by NSS Kaizen, which aims to recognize the continuous improvements in our society and develop the connection between various different organisations to work collaboratively. More information at: http://nss.iitd.ac.in/#/

5.13 National Cadet Corps (NCC)

The National Cadet Corps is an organization aiming at the development of leadership, character, comradeship, spirit of sportsmanship and the ideal of service, among the youth in educational institutions. The motto of NCC is “Unity and Discipline”.

5.14 National Sports Organization (NSO)

The National Sports Organisation is a classification in the scheme of education formulated in the furtherance of setting an environment of sports consciousness and improvement of physique among the youth during their education. Sports is included in the curriculum at IIT Delhi.
5.15 Student Counselling Service (SCS)

The Student Counselling Service under the aegis of Board for Student Welfare at the Institute aims at assisting students in sorting out their difficulties and dilemmas in an environment where they can talk freely in confidence about any matter which is troubling them. Students seek counseling for a variety of reasons, such as difficulties in adjusting to campus life, problems in relationship, being shy, feeling lonely, anxious, depressed, confused, demotivated, low self-esteem, difficulties in coping with academic pressures and competition, worries about the future and low self-confidence.

5.16 Entrepreneurship Development Cell (EDC)

Entrepreneurship Development Cell is a student-run body working with an aim to promote, foster and nurture entrepreneurship amongst the student community at IIT Delhi. It works as a primary student body of the institute which helps the young aspiring minds to explore and open the doors of the promising and exciting world of entrepreneurship. The initiatives and activities of the cell are not just aimed at promoting and creating awareness about entrepreneurship as a career choice, they also aim to nurture entrepreneurial skills through different events, workshops and competitions, and provide all kinds of support to budding student entrepreneurs, ranging from mentorship and skill-development to facilitating the process of incubation-related activities.

EDC IIT Delhi continuously works towards facilitating entrepreneurship education and developing a comprehensive resource pool.

In this pursuit, it organizes a plethora of events and initiatives, which includes the following:

- Exclusive Townhall Sessions with top entrepreneurs of the world
- Workshops, Guest Lectures and Bootcamps on entrepreneurship
- Mentorship Sessions with experienced entrepreneurs
- Annual Business and Entrepreneurship Conclave
- Facilitate Student-led startups in Legal Services
- Investor Meet-ups and Pitching Sessions
- Online Entrepreneurship Resource Portal
- Facilitate in Incubation Related Activities
- Business Plan Competitions

As an institute, IIT Delhi has always been at the forefront to support entrepreneurship and is proud to be the alma mater of a large number of Indian Unicorn founders, with many luminary alumni who have made their mark in the entrepreneurial sphere. EDC IIT Delhi provides a myriad of opportunities to all the interested students to interact...
with various entrepreneurs and top industry leaders, while providing them with a great platform to learn, network and gain exposure to the entrepreneurial world. Working along with FITT IIT Delhi, EDC IIT Delhi ensures a smooth support to the budding entrepreneurs, ready to transform their ideas into reality.

5.17 Departmental Professional Societies

Most of the Departments/Centres/Schools have professional societies managed by the faculty and students to promote academic and professional interests. These societies also facilitate student-teacher interaction outside the classroom.

5.18 Medical Facilities

The Institute Hospital is a 14 bedded well equipped primary Health Care facility providing OPD treatment and admission for general ailments. Being located in the centre of the campus, our patients have easy access to the medical facility. The Hospital has an outsourced Apollo Pharmacy which is open from 8 am to 8 pm providing good quality medicines. The Hospital is managed by a team of full time 10 allopathic doctors, one homeopathic doctor, one dental doctor and 4 doctors on contract basis from Apollo life for night and evening duties on weekdays and holidays providing 24X7 availability of doctors in the emergency. The Dental unit is well equipped and the dental surgeon is managing all dental emergencies including minor oral surgical procedures. The Biomedical waste protocol is followed as per Government guidelines.

The Hospital is also visited by part time specialists from All India Institute of Medical Science (AIIMS) in the field of Cardiology, ENT, Endocrinology, Orthopaedics, Ophthalmology, Psychiatry, Neurology and Ayurvedic specialist from All India Institute of Ayurveda, Delhi. The doctors are assisted by efficient Nurses, Physiotherapist and other Paramedical staff and manage primary emergencies and serious patients are referred to All India Institute of Medical Science (AIIMS), Safdarjung Hospital (SJH) and IIT empanelled hospitals in an Ambulance which is available 24x7 on all days. The employees also have facility of health insurances.

IIT Delhi Hospital is a recognized centre for pulse polio immunization. The Hospital provides medical aid during Sports meet, Rendezvous, Annual Convocation, other Cultural functions and events. Free educative and health check-up camps are also provided for the IIT community. The group A employees also get the facility of annual health checkup at IIT empanelled hospital. The preventive Health Check up is done throughout the year for staff as well as students. All new appointments undergo medical examination in the hospital before they join the Institute.

5.19 Student-Teacher Interaction

The Institute encourages students to come in close contact with teacher. The Student-Teachers Interaction Committee (STIC) facilitates and promotes contact between teachers and students.
Student–Teacher Interaction Committee (STIC)

STIC encourages healthy and informal interaction of students with their teachers outside the boundaries of classrooms environment. Teacher can take their students to trip, for get-together and can have informal interaction. Dinners are organized in the hostel every semester where students can invite their teachers in their hostels. STIC also organizes dinners exclusively for all freshers with their teachers who were teaching in 1st semester of academic year and also with their teachers of the department. Departmental professional societies are encouraged to organize informal activities in their departments and STIC Partially supports monetarily.

Class Committees and Course Committees

In order to bring about greater contact between students and teachers, Course Committees and Class Committees are constituted, comprising of both, students and faculty. These committees discuss academic matters relating to the course or class concerned.

Student Advisors

A student advisor is appointed by the Department for a group of 10-12 students in the B.Tech., and dual-degree (B.Tech. and M.Tech.) programmes. Student are encouraged to keep in constant touch with his/her adviser regarding all academic affairs. The advisor, in turn, will provide the student with suitable advice regarding courses, academic load, and rules and regulations, etc. governing his/her academic programme. Student’s registration each semester is carried out through the office of his/her advisor. The student advisor is also expected to keep in touch with the student’s general performance and welfare both formally, as well as through informal channels.

Programme Coordinators

The administration of all postgraduate programmes is facilitated by a faculty member designated as the Programme Coordinator. The Programme Coordinator helps students regarding all registration and course related matters.

5.20 Alumni Association

The IIT Delhi Alumni Association (IITDAA) was established in 1966. All IITD Alumni are members of the IITDAA. The Association has multiple chapters spread over the entire globe. The Indian chapters are in the cities of Ahmedabad, Bangalore, Chandigarh, Chennai, Dehradun, Hyderabad, Kolkata, Jaipur, Mumbai, NCR East and South and Pune. We have international chapters in Australia, UK, Qatar, Germany, Italy, Denmark, USA and South Arabia among other nations.

Some goals of the Association are:

- To promote and foster mutually beneficial interaction between the alumni and the current students of the institution,
- To encourage the alumni to take an active and abiding interest in the work and progress of the Institute,
• To organize and establish Benevolent and Scholarship Funds to help the needy and deserving students,
• To institute prizes and awards for outstanding project work, research papers or other professional activities by the students of the Institute,
• To raise public awareness of the role of technology in the economic and social development of the nation.

5.21 Conduct and Discipline
A student shall conform to a high standard of discipline and shall conduct himself, within and outside the precincts of the Institute, in a manner befitting the students of an Institution of national importance. He/she shall have the seriousness of purpose and shall in every way, train himself to lead a life of earnest endeavor and co-operation. He/she must follow strict ethical standards. Under no circumstances he/she will adopt unfair means for completing any component of evaluation in a course. He shall show due courtesy and consideration to the employees of the Institute and Halls of Residence, good neighbourliness to his fellow students, respect to the Wardens of the Halls of Residence and the teachers of the Institute and pay due attention and courtesy to visitors.

5.22 Honour Code
In order to promote ethical behaviour, the Institute requires every student to agree to abide by the Honour Code. At the time of admission, every student has to sign the Honour Code and submit a copy to the respective academic section. Violations of this Code are taken very seriously and may result in suspension or expulsion. The Honour Code is given on the inside back cover of this document.

5.23 Institute Policy on Ragging
Ragging is banned in the Institute. If a student is found to have indulged in ragging in the past, or if it is noticed later that he/she has indulged in ragging, then he/she may be expelled from the Institute.

5.24 Policy against Sexual Harassment
Institute has a policy against sexual harassment and is committed to providing an environment free from sexual harassment of women at the workplace.
6. ACADEMIC UNITS

DEPARTMENT OF

APPLIED MECHANICS
Sanjeev Sanghi, Ph.D. (City Univ.)
Professor

Amitabh Bhattacharya, Ph.D. (UIUC)
Associate Professor

Vamsi K. Chalamalla, Ph.D. (UC San Diego)
Assistant Professor
Computational Fluid Dynamics, Ocean Modeling, Stratified Turbulence.

Souvik Chakraborty, Ph.D. (IIT Roorkee)
Assistant Professor

Murali R. Cholemari, Ph.D. (IISc., Bangalore)
Associate Professor

Anupam Dewan, Ph.D. (IISc., Bangalore)
Professor

Sriram Hegde, Ph.D. (IIT Delhi)
Senior System Programmer/Manager

Narsing Kumar Jha, Ph.D. (IISc. Bangalore)
Assistant Professor

Santosh Kapuria, Ph.D. (IIT Delhi)
Professor

Ajeet Kumar, Ph.D. (Cornell Univ.)
Associate Professor

Puneet Mahajan, Ph.D. (Montana State Univ.)
Professor
Composites: Homogenization and Mechanical Properties, Low and High Velocity Impact of Composites, Precision Glass Molding, Helmets, Snow Mechanics, Finite Element Applications.
Prapanch Nair, Ph.D. (IISc. Bangalore)
Assistant Professor
Nonlinear Static/Dynamic Analysis of Shells,
Composite Structures, Functionally Graded Structures,
Bimodular Composite Structures, Continuum Damage
Mechanics, Multiscale Modelling of Nano-Structures.

B.P. Patel, Ph.D. (MNNIT, Allahabad)
Professor
Nonlinear Static/Dynamic Analysis of Shells,
Composite Structures, Functionally Graded Structures,
Bimodular Composite Structures, Continuum Damage
Mechanics, Multiscale Modelling of Nano-Structures.

Sitikantha Roy, Ph.D. (Utah State Univ.)
Associate Professor
Soft Robotics, Biomechanics, Computational
Mechanics, Smart Structures, Mechanics of Multi-
functional Polymer, Surgical Simulation, Medical
Device, Data Driven Mechanics, Machine Learning.

Pradyumna S., Ph.D. (IIT Kharagpur)
Associate Professor
Functionally Graded Materials, Structural
Dynamics, Stability, Composite Structures,
Smart Structures, Plates and Shells.

Sushma Santapuri, Ph.D. (Ohio State)
Assistant Professor
Mathematical Modeling of Functional/Smart
Advanced Materials, Electrodynamic of Continua,
Asymptotic Theories for Smart Composite Structures,
Thermodynamics of Functional Materials, Rod and Plate
Theories, Multiferroic Materials and their Applications.

Arghya Samanta, Ph.D. (UPMC, France)
Associate Professor
Falling Film Instability, Multi-Layer Channel
Flow, Flow Transport Through Porous Media,
Modal and Non-modal Stability,
Oscillatory Flow Instability.

Arjun Sharma, Ph.D. (Stanford University)
Assistant Professor
Compressible Flows, Numerical Simulations,
Large-eddy Simulation, Turbulent Flows and
Acoustics.

Gaurav Singh, Ph.D. (Imperial College London)
Assistant Professor
Fracture Mechanics, Composite Mechanics,
Contact Mechanics, Molecular Dynamics.

M.K. Singha, Ph.D. (IIT Kharagpur)
Professor
Stability and Dynamics of Beams, Plates, Shells and
Lightweight Structures, Composite, Functionally
Graded and Sandwich Panels, Behaviour of
Materials and Structures at Different Loading Rates.

Sawan Suman Sinha, Ph.D. (Texas A & M)
Associate Professor
Turbulence Theory and Modelling,
Hypersonic Flows, Bridging Method of
Turbulence, Boltzmann Equation-based Solvers.

Vikrant Tiwari, Ph.D. (South Carolina Univ.)
Associate Professor
Digital Image Correlation, Impact Mechanics,
Dynamic Fracture Mechanics, Product Design &
Analysis, Fuel Cell.

S.V. Veeravalli, Ph.D. (Cornell Univ.)
Professor
Experimental Investigation of Turbulent
Flows, Stability Theory, Design Method
for Sustainable Development.
Suhail Ahmad, Ph.D. (IIT Delhi)
Emeritus Professor

S.N. Singh, Ph. D. (IIT Delhi)
Emeritus Professor

Yunus Patel, M.S. (Cornell University)
Adjunct Professor of Practice

Adjunct Faculty
Marine Hydrodynamics, AUV Design, Underwater Gliders.

Adjunct Faculty
Marine Corrosion Management, Operational Management.

Adjunct Faculty
Naval architecture, Ship Dynamics, Ship Aerodynamics, Warship Design.

Suhail Ahmad, Ph.D. (IIT Delhi)
Emeritus Professor

S.N. Singh, Ph. D. (IIT Delhi)
Emeritus Professor

Yunus Patel, M.S. (Cornell University)
Adjunct Professor of Practice

Adjunct Faculty
Marine Hydrodynamics, AUV Design, Underwater Gliders.

Adjunct Faculty
Marine Corrosion Management, Operational Management.

Adjunct Faculty
Naval architecture, Ship Dynamics, Ship Aerodynamics, Warship Design.
INTRODUCTION

The Departmental activities in teaching and research can be broadly classified under the headings of Solid Mechanics, Fluid Mechanics and Design Engineering.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers a B.Tech. in Engineering and Computational Mechanics. The B.Tech. Programme focuses on basic as well as the emerging areas of mechanics such as Bio-Mechanics, Nano-mechanics, Multi-scale and Multi-physics modelling. The courses in the programme cover recent trends in computational techniques (FEM, CFD, parallel processing), high performance computing, machine learning, Artificial Intelligence (AI) etc. The students are exposed to fundamental and latest techniques in experiments and its importance for model validation. Students from other departments can also obtain minor degree in Applied Mechanics with specialization in Computational Mechanics.

Basic courses in Mechanics, Experimental Methods and Analysis, and Design Engineering that are part of the undergraduate core curriculum. Faculties are also involved in guiding undergraduate students of various programmes in their mini and major projects.

POSTGRADUATE

The Department offers Masters of Technology programmes in – (i) Engineering Analysis, & Design. Students admitted to the M.Tech. Programme in Engineering Mechanics can opt for specialization in either (a) Engineering Mechanics (b) Product Design. With in Engineering Mechanics students can choose to work in Solid Mechanics or Fluid Mechanics. A masters of Science (Research) programme is also offered with specialization in Applied Mechanics. A Postgraduate Diploma course in Naval Construction is also offered, in collaboration with the Indian Navy, to officers sponsored by Indian Navy. The course is of one and a half years duration.

RESEARCH AREAS

The Department has been involved in the following broad areas of research:

- Elasticity, Plasticity, Large Deformations, Manufacturing Analysis, Impact and Crash worthiness, Composite Materials, Composite Plates and Shells, Off-shore Structures, Smart Structures, Snow Mechanics, Computational Methods for Stress Analysis and Structures, Structural Optimization, Finite Element Method, Seismic analysis of Tall structures, Parallel Computing, Non-linear Dynamics and Chaos, Stability and bifurcation theory,

Besides, the Department also organizes seminars, symposia, short-term courses and advanced summer schools for faculty of engineering institutes and engineers from industry. It also undertakes industrial consultancy work and has in hand both short and long-term projects sponsored by the government agencies and private industrial organizations.

Doctoral research is currently being carried out in:

LABORATORY FACILITIES

The Department has well-equipped laboratories, workshop and library facilities. The laboratories and their major facilities are as follows:

- **Computation Laboratory:** Graphics Workstations with engineering software such as ANSYS, ABAQUS, COMSOL.
- **Design Optimization Laboratory:** Workstations, Dual Processor–Softwares such as IDEA, ABAQUS, FLUENT, MATLAB, MATHCAD.
- **Fluid Mechanics Laboratory:** Pilot plant test loop for slurry transportation, pilot plant for flow rate measurement up to 8 cusecs, Bohlin viscometer, Weissenberg Rheogoniometer, Water tunnel with advanced measurement techniques.

- **Gas Dynamics Laboratory:** Industrial wind tunnel (1.6m x 1.6m x 10m test section closed loop), Environmental wind tunnel (2m x 2m x10m suction type; is currently being renovated and may qualify for a central facility to be used by Civil Engineering Department, Mechanical Engineering Department and Atmospheric Sciences) and low turbulence wind tunnels, Wide angle diffuser rigs. Instruments: PIV(2D/3D), LDV, Hot wire Ancomometry, Pressure and Strain Scanners.

- **Instruments:** PIV (2D/3D), LDV, Hot wire Ancomometry, Pressure and Stain Scanners.

- **Impact Mechanics Laboratory:** Split Hopkinson Bar apparatus (tension and compression), High velocity projectile launch system, Dynamic three point bend test facility, Ultra high speed cameras, High speed data acq. system.

- **MTS Laboratory:** 250 kN and 25 kN & MTS machine with facilities for mechanical testing, fracture mechanics testing and fatigue testing.

- **Strength of Materials Laboratory:** 25 T Computerized Universal Testing machine (Zwick), 50 T Instron m/c, 10T and 100 T hydraulically operated Universal Testing m/c, Avery machines for hardness, impact, torsion and fatigue testing, Drop hammer facility (Instron 9250 HV) modified for Helmets. Stereo Zoom Microscope (Leica), 50 kN UTM machine with thermal chamber and bending/compression/fracture accessories (Zwick), Camera (Basler).

- **Biomechanics/Soft Material Lab:** 5kN UTM, AFM, Inverted Microscope Optical Bench, Sample preparation facility.

- **Stress Analysis Laboratory:** Photo-elastic bench, Reflection polariscobe, Moire fringe equipment, Digital strain meters, Super data loggers, Stress freezing ovens, etc.

- **Workshop:** The departmental workshop has a number of machines that include Lathe machines, vertical milling machines, shaping machine, drilling machines, bench grinders, high temperature furnace, welding sets etc.

- **Composites Lab:** Vacuum Assisted Resin Infusion Moulding, Fixtures for testing composites and micro CT scanner.
DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY
Shaikh Ziauddin Ahammad, Ph.D. (IIT Delhi)
Associate Professor
Wastewater Treatment-Physico-Chemical and Biological, Anaerobic Wastewater Treatment.

Rita Kulshreshta, Ph.D. (Delhi Univ.)
Professor
RNAi Technology, MicroRNAs in Cancer Biology, Cancer/Disease Biomarkers, Hypoxia Research.

Lucinda Elizabeth Doyle, Ph.D. (Nanyang Technological University, Singapore)
Assistant Professor
Electromicrobiology, Microbial electrochemistry, Electrochemically-active Microorganisms.

Ashish Misra, Ph.D. (Rutgers The State University of New Jersey, New Brunswick)
Assistant Professor
Metabolic Analysis and Engineering, Clinical Diagnostics, Bioprocessing.

Ravikrishnan Elangovan, Ph.D. (Florence Univ.)
Associate Professor
Single Molecule Biophysics, Fluorescence Spectroscopy, Molecular Motors, Skeletal Muscle Mechanics.

Prashant Mishra, Ph.D. (JNU)
Professor

Ishaan Gupta, Ph.D. (EMBL & University of Heidelberg, Germany)
Assistant Professor
Biostatistics and Functional Genomics, RNA Biology, Aging, Neurodegeneration and Organ degeneration, Parasitology.

K.J. Mukherjee, Ph.D. (IIT Delhi)
Professor
Bioprocess Optimization and Scale up. Primary interest is in Designing Host Platforms for Over-expressing Metabolites and Recombinant Proteins and Linking them with Bioprocess Strategies for Overproduction.

Rohan Jain, Ph.D. (Univ. of Paris-Est Marne-la-Vallee)
Assistant Professor
Industrial Wastewater Treatment, Adsorption, Complexation, Resource Recovery, Critical Metal Recovery, Bio-ligands, Scale-up, Spin-off.

Atul Narang, Ph.D. (Purdue Univ.)
Professor
Systems Biology of Microbial Gene Regulation.
Sunil Nath, Dr. Ing. (Braunschweig Univ. Germany)
Professor
Bioseparation, Mechanism and Thermodynamics of ATP-based Molecular Machines, Molecular Systems Biology/Engineering.

Shilpi Sharma, Ph.D. (Ludwig Maximilians Univ. of Munich, Germany)
Professor
Functional Microbial Ecology.

T.R. Sreekrishnan, Ph.D. (IIT Delhi)
Professor
Waste Engineering, Environmental Biotechnology.

Preeti Srivastava, Ph.D. (IIT Delhi)
Associate Professor
Microbial Genetics.

Madhuresh Sumit, Ph.D. (University of Michigan - Ann Arbor, USA)
Assistant Professor
Integrating Computational and Experimental Systems Biology to Understand and Manipulate Cell Responses; Multi-scale Modeling of Non-linear Physiological Systems and Bio-processing Units; Application of Integrated Systems Approach Towards Process Optimization; Miniaturization of Bioprocessing for Personalized Medicines.

Saroj Mishra, Ph.D. (New York City Univ.)
Visiting Professor
Molecular Biology and Applications of Cellulases, β-glucosidases, Xylanases and Development of Yeast Expression Systems.
INTRODUCTION

The Department offers a unique blend of scientific expertise in applied biological sciences, chemical and biochemical engineering. It strives for application of this expertise to evolve various biotechnological products, processes and services through:

- Generation of highly trained human resource capable of quantitative analysis of biological systems to facilitate their role in manning modern bioprocess industries and to provide an integrated approach to research and development in biotechnology.
- Evolving research and development programmes to develop products and provide services in bio energy, environment and therapeutics.
- Leading global innovations in Bioprocess Technology, Applied Biological Sciences and facilitate participation in industrial consulting and sponsored research.
- Dissemination of knowledge generated through short term courses, workshops and conferences.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers a four year B.Tech. Programme.

POSTGRADUATE

At postgraduate level the department offers a M.S. (Research) Programme.

RESEARCH AREAS

Some of the focal areas of research of the department are:

- Bioprocess Engineering
- Cell and Molecular Biotechnology
- Downstream Processing
- Systems and Computational Biology
- Bionanotechnology
- Environmental Biotechnology
- Functional Genomics
Doctoral research is being carried out in the following areas:
Microbial physiology and biochemistry, Metabolic engineering, Recombinant DNA technology, Enzyme science and engineering, Animal and plant cell fermentations, Bioreactor design and analysis, Bioseparation and downstream processing systems, Biological waste treatment, Biological molecular machines, Biosensors, Drug delivery systems and Protein-DNA recognition and Bionanotechnology.

LABORATORY FACILITIES
The Department is well equipped for the teaching and research programs and the equipment and facilities are regularly modernized as per requirements. Major equipment and facilities are:

- **Bioreactors**: Several bioreactors with capacities ranging from 0.5 to 300 litres, equipped with instruments for monitoring and control pH, temperature, dissolved oxygen, and gaseous O_2/CO_2 levels. A pilot plant facility is available for transferring laboratory scale data to industrial scale.
• **Bioseparation:** Ultra-filtration unit, ultracentrifuge, ultrasonic disintegrator.

• **Analytical equipment:** Elemental analyzer, HPLC, IC, GC, FPLC, GC-MS, ICP-MS, LC-MS and other chromatography systems; visible and UV spectrophotometer, CD Spectropolarimeter; Spectrofluorimeter; Fluorescence microscope and Flow cytometer.

• **Molecular biology:** Several molecular biology labs containing standard equipment such as laminar flow chamber, anaerobic work cabinet, centrifuges, water baths, sonicators, lyophilizer, isoelectric focusing unit, scanning laser densitometer, PCR, and RT-PCR electroporation-electrofusion system. There is also a lab equipped with a scintillation counter for working with radioisotopes.

• **Computing facility:** A separate computation lab with several PCs is also available. A Bioinformatics Centre sponsored by the Department of Biotechnology, Government of India, under the Biotechnology Information System Network (BTISnet) is also housed in the department.

• **Upcoming state-of-the-art imaging and genomics facility**
Kamal K. Pant, FNAE, FNASC, Ph.D. (IIT Kanpur)
Professor
Heterogeneous Catalysis and Reaction Kinetics, Catalytic Hydrocarbon Conversion Processes, Water Treatment.

Suddhasatwa Basu, FNAE, FNASC, Ph.D. (IISc., Bangalore)
Professor
Hydrogen and Fuel Cell Technology, Electrochemical Energy Storage & Engineering

Ashok N. Bhaskarwar, Ph.D. (IISc., Bangalore)
Professor

Divesh Bhatia, Ph.D. (Univ. of Houston)
Associate Professor

Vivek V. Buwa, Ph.D. (IIT Bombay)
Professor
Computational Fluid Dynamics, Multiphase Flows, Reactor Engineering.

Paresh P. Chokshi, Ph.D. (IISc., Bangalore)
Associate Professor
Hydrodynamic Stability, Theoretical /Computational Polymer Physics, Dynamics of Complex Fluids, Polymer Processing.

Shalini Gupta, Ph.D. (NC State Univ.)
Associate Professor
Colloidal Interactions and Nanoscale Engineering, Molecular Self-assembly, Microfluidics, Nanolithography.

Sharad K. Gupta, Ph.D. (Polytechnic Institute of New York)
Professor
Transport Phenomenon, Membrane Separation Process.

Somnath Ghosh, Ph.D. (Univ. of Twente, Netherland)
Assistant Professor

Gaurav Goel, Ph.D. (Univ. of Texas, Austin)
Associate Professor
Transport at Nanoscale, Structure-property Solvophobic Interactions and Self-assembly.

Mohammad Ali Haider, Ph.D. (Univ. of Virginia)
Associate Professor
Heterogeneous Catalysis, Biorenewable Chemicals and Biofuels.
Rajesh Khanna, Ph.D. (IIT Kanpur)
Professor
Phase Separation, Thin Liquid Films, Mist Reactors, Colloids and Interfacial Science.

Hariprasad Kodamana, Ph.D. (IIT Bombay)
Assistant Professor
Model Based Control, System Identification, Process Monitoring, Bayesian Inference, Process Data Analytics.

Manjesh Kumar, Ph.D. (University of Houston)
Assistant Professor

Manoj C. Ramteke, Ph.D. (IIT Kanpur)
Associate Professor

Anurag S. Rathore, Ph.D. (Yale Univ.)
Professor
Biosimilars, Bioprocessing, Quality by Design (QbD), Process Analytical Technology (PAT), Multi-variate Data Analysis (MVDA).

Shantanu Roy, Ph.D. (Washington Univ.)
Professor
Multiphase Reactor Engineering, Multiphase Flows, Radioactive Trace Particle Tracking.

Jayati Sarkar, Ph.D. (IIT Kanpur)
Associate Professor

Anil K. Saroha, Ph.D. (IIT Delhi)
Professor
Multiphase Reactors, Environmental Engineering.

Munawar A. Shaik, Ph.D. (IIT Bombay)
Associate Professor

Anupam Shukla, Ph.D. (IIT Kanpur)
Professor
Membrane Synthesis & Separations, Electrochemical Systems Engineering.
Vikram Singh, Ph.D. (Cornell University)
Assistant Professor

Sreedevi U., Ph.D. (IIT Kharagpur)
Professor
Heterogenous Catalysis & Reaction Engineering, Thermochemical & Chemical Pathways to Renewable Liquid Fuels, Green Chemical Technologies.

Anil Verma, Ph.D. (IIT Delhi)
Professor

M.K.S. Verma, Ph.D. (IISc., Bangalore)
Assistant Professor
Fluid Mechanics, Flow Instability in Flexible Channel/Tube, Microfluidics, Medical Devices, Bio-inspired Design, Lithium-ion Batteries, Electrochemical Modeling, Battery Management System (BMS).

K.D.P. Nigam, Ph.D. (UDCT, Mumbai)
Honorary Professor

Ratan Mohan, Ph.D. (IIT Kanpur)
Visiting Faculty
Computational Fluid Dynamics, Process Engineering, Thermodynamics.

R.R. Sonde, Ph.D. (IIT Mumbai)
Visiting Faculty

Sreedevi U., Ph.D. (IIT Kharagpur)
Professor
Heterogenous Catalysis & Reaction Engineering, Thermochemical & Chemical Pathways to Renewable Liquid Fuels, Green Chemical Technologies.
INTRODUCTION

The Department of Chemical Engineering (CHE) at IIT Delhi, one of the finest in India, is dedicated to providing the best education, research practices and ecosystem to all its associated members. The undergraduate and postgraduate students can choose from a wide range of courses and research projects from the Department’s meticulously designed academic program. The courses span from fundamental sciences to complex mathematical relationships and engineering design aspects of chemical and biological process technology. The students are rigorously trained and evaluated on a continuous basis so that they are well prepared to be leaders in whichever field they choose to pursue may it be academia, industry, technology management, entrepreneurship or working for a social cause. The course curriculum is upgraded every ten years to keep up with the changing scenario, requirements and technological advancements around the world.

The Department maintains a vibrant research profile and currently boasts of having one of the best group of faculty members in the country who are not only experts in their respective fields of research but are also engaged in multidisciplinary projects that cater to the broader economic, societal and environmental development and growth of the country. The Department maintains a close liaison with a large number of chemical, biotech companies and design organizations because we believe it is essential to perform basic fundamental scientific research alongside the applied one. The faculty regularly undertakes consultancy assignments in which postgraduate students can make great contributions and students at the undergraduate level are constantly encouraged to identify industrial organizations for summer internships.

Every faculty member has a well-equipped lab in which advanced instruments are kept for use by all the students. Some of the facilities include liquid-liquid extraction columns, autoclaves, large capacity blowers, compressors, gasifiers, combustors, pyrolysis systems, bubble and packed columns, circulating fluidized beds, batch and continuous flow reactors, carbon-dioxide absorption systems, bench-top optical and electron microscopes, FTIR, GCMS, TGA, DTA, TPD/TPR, submicron particle size analyzer, powdered particle shape analyzer, high speed photographic equipment, data loggers, high speed multipoint recorders, HPLC, ion chromatograph, CHN analyzer, viscometer, GC with mass spectrometer, atomic absorption spectrometer, automatic contact angle goniometer and tensiometer, radioactive particle tracking (RPT) system, spin coater and surface plasmon resonance (SPR) spectroscope, BET Surface Area Analyser, Malvern Mastersizer 3000, Integrated Confocal Raman Microscope & Atomic Force Microscope, Formulation Turbiscan Tower. The Department also has two pilot plants and a newly furbished central characterization lab that currently houses an XRD, rheometer and a surface texture analyzer. More instruments are constantly added to this repertoire.

In addition to the analytical instrumentation facilities, there are also extensive computing facilities and softwares like Aspen Plus, SimSci, Fluent, CFX and Promax that are made available to the undergraduate and research students.
for carrying out their project work. The Department has also set up a state-of-the-art pollution control and testing laboratory and a process research laboratory provided with 40 intel core 2 duo computers and a state-of-the-art Tata-Honey Well Automation Laboratory.

Once a week, the department organizes a research seminar in which external speakers or our own Ph.D. students present their research work. This helps the students to stay abreast with the latest developments in the Chemical Engineering field and also gives them a perspective about their own research from a global view standpoint. Summer and winter schools under quality-improved program (QIP) are also organized from time to time. With so much happening in the department, we strongly urge you to join us as a student, staff or faculty, or at least pay us a visit when you are in the neighborhood.

VISION

The Department’s long-term vision is to become a world leader as a developer of technologies related to energy, environmental protection, novel materials, and healthcare. The Department has been prolific in the areas of materials development for energy generation and storage, catalysis and multiphase reactor engineering, process intensification in non-renewable and renewable energy sectors, modeling and simulation from molecular to process scales, and manufacturing technology for production of biotech therapeutics. We would like to build on our strengths and strive for national and international presence in these areas by continuing our fundamental research and technology development initiatives, and further strengthening our bachelors, masters and doctoral programs. We expect that these endeavors will not only attract superior faculty but will provide and create an enabling ecosystem for students to explore, innovate and smoothly transition into the professional arena. The Department would like to build focused research programs networked with industry, institutions, universities and government agencies. We would like to develop/co-develop effective and affordable technologies scripting joint IPR in partnership with industry, or through consortia leading to spin-offs. The Department strives to promote a technology temperament in society at large, especially to young minds through extensional activities via technology enhanced video and web based distance learning courses, creation of virtual laboratory and resource centres and participating in policy making and public debates.

ACADEMIC PROGRAMMES

The Department offers two undergraduate degrees, one leading to a 4 year B.Tech. and the other to an integrated 5 year Dual Degree (B.Tech + M.Tech.). At the postgraduate level, the Department offers M.Tech., M.S. (Research) and Ph.D. degrees. The teaching at the undergraduate level aims at providing the students a broad-based education in theory and practice of Chemical Engineering keeping in view the current and future requirements of the country. At the postgraduate level, students are trained to assume independent responsibilities by laying emphasis on self
study component in courses and assigning them TA duties to mentor UG students. Opportunities are provided to the students at all levels to get acquainted with the latest developments in the various areas of Chemical Engineering. Our institute also has an M.O.U. with Ethiopia and we regularly get students from there as part of our M.Tech. and Ph.D. foreign programmes.

UNDERGRADUATE

B.Tech. students need to do a compulsory foundation courses in the areas of basic sciences, humanities, social sciences and engineering sciences along with Departmental core and elective courses. Departmental courses constitute about half of the total curriculum. Some of the core chemical engineering subjects include fundamentals of mass/heat transfer, chemical reaction engineering, process control, thermodynamics, fluid mechanics, plant design and economics. Students also do open electives to broaden their repertoire of interdisciplinary knowledge-base. Further, there is provision to do a minor degree, for example in computer science and engineering, for which a student needs to do additional credits in the minor area to be eligible for the minor area specialization.

POSTGRADUATE

The 5 year dual degree program (integrated B.Tech. + M.Tech.) in Chemical Engineering is viewed as a high-value added course fit for students who wish to enhance the scope of their B.Tech. degree with one additional year of research experience. The students can take additional elective courses which opens avenues for better placements both in academia and in the industry. The masters of technology (M.Tech.) is a standard two year programme after B.Tech. comprising of one year of rigorous coursework followed by an year of research training under the guidance of a ChE faculty supervisor. The Department also offers M.S. (Research) programme in Chemical Engineering which includes first semester of course work followed by three semesters of rigorous research work. There are also provisions for doing a part-time M.Tech./MS for persons already employed in the industry and are looking for value addition in their knowledge base and resumes.

The highly motivated individuals choose to obtain a Doctor of Philosophy (Ph.D.) degree in Chemical Engineering as this is an intensively research-driven program. The students are also expected to qualify a set of the advanced chemical engineering courses in their first year while maintaining a minimum CGPA requirement. The various broad topics of Ph.D. research include renewable and non-renewable energy, catalysis, multiphase reaction engineering and process intensification, complex fluids and rheology, advanced materials, process modeling simulation, optimization, process control, pharmaceutical biotechnology, environmental engineering and waste management.

RESEARCH AREAS

The ChE faculty is actively engaged in basic and applied research leading to the award of many Masters and
PhD degrees. These projects are sponsored by industries, user organizations and government funding agencies (DST, DBT CSIR, DRDO, MNRE, etc.). The projects are directed towards development of innovative and indigenous technologies for processes relating to efficient heat and mass transfer, design of biosimilars, biomass thermo-chemical conversion processes, hydrodynamics and cold flow studies in trickle beds, packed beds and bubble columns, membrane transport studies, recovery of metals from spent catalysts, oil recovery from emulsion effluents, natural gas production from gas hydrates, solid oxide fuel cells, waste water treatment and design of novel diagnostic bioassays. The research activities of the department can be broadly classified in the following subareas.

- Battery and Fuel Cells
- Bioseparations and Bioprocessing
- Colloids and Nano Scale Engineering
- Computational Fluid dynamics
- Density Functional Theory Simulations
- Fluid and Particle Mechanics
- Homogeneous and Heterogeneous Catalysis
- Interfacial Engineering
- Model based Optimization and Process Control
- Molecular Dynamic Simulations
- Petrochemical Technology
- Polymer Physics and Engineering
- Process Data Analytics
- Process Intensification
- Reservoir and Refinery Processes
- Renewable Energy Engineering
- Water Treatment

A FEW DEPARTMENTAL RESEARCH STATISTICS

Research Funding (2018-2020) Sponsored R&D Projects ~INR 80 Crore: The Department is highly proactive in writing research grants. This has resulted into sponsored R&D projects worth almost INR 80 Cr over 3 years. The Faculty also regularly does industrial consultancy work. The Year-wise split is shown in the adjoining bar graph.
Number of Peer Reviewed International Journal Publications: The Department is also very productive in writing scientific articles. These articles are published in international journal of great repute. The year-wise data of the number of international journal articles published in the last 4 years is given in the below graph.

Placement Statistics 2020-2021: The Department has a good placement record. Students here are placed in different sectors like Analytics, Consulting, Finance, IT etc. Last Year placement graph is shown in the adjacent pie chart.
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>![HPLC Image]</td>
</tr>
<tr>
<td>Microreactor Unit</td>
<td>![Microreactor Unit Image]</td>
</tr>
<tr>
<td>Optical Microscope</td>
<td>![Optical Microscope Image]</td>
</tr>
<tr>
<td>Radioactive Particle</td>
<td>![Radioactive Particle Image]</td>
</tr>
<tr>
<td>Malvern Mastersizer 3000</td>
<td>![Malvern Mastersizer 3000 Image]</td>
</tr>
<tr>
<td>Bet Surface Area Analyzer</td>
<td>![Bet Surface Area Analyzer Image]</td>
</tr>
<tr>
<td>Turbiscan Tower</td>
<td>![Turbiscan Tower Image]</td>
</tr>
<tr>
<td>UV-VIG Spectrophotometer</td>
<td>![UV-VIG Spectrophotometer Image]</td>
</tr>
<tr>
<td>3D-controlled Micro Imaging</td>
<td>![3D-controlled Micro Imaging Image]</td>
</tr>
<tr>
<td>Gas Chromatograph</td>
<td>![Gas Chromatograph Image]</td>
</tr>
<tr>
<td>Integrated Confocal Raman</td>
<td>![Integrated Confocal Raman Image]</td>
</tr>
<tr>
<td>Microscope & Atomic Force</td>
<td>![Integrated Confocal Raman Microscope & Atomic Force Image]</td>
</tr>
</tbody>
</table>
Anil J. Elias, Ph.D. (IIT Madras)
Professor
Synthetic Main Group and Organometallic Chemistry.

Debkumar Bandyopadhyay, Ph.D. (I.A.C.S.)
Professor
Metalloporphyrin Catalyzed Oxidation

Biswarup Chakraborty, Ph.D. (I.A.C.S.)
Assistant Professor
Polyoxometalate Based Hybrid Nanostructure, Bifunctional Materials for Photo- and/or Electro- Catalysis, Small Molecule Activation; CO₂ Reduction and H₂O Oxidation, Kinetics Study and Reaction Mechanism.

Pramit K. Chowdhury, Ph.D. (Iowa State Univ.)
Professor
Physical and Biophysical Chemistry, Protein Folding using Single Molecule Confocal Microscopy.

Shashank Deep, Ph.D. (IIT Delhi)
Professor
Physicochemical Characterization of Macromolecule Interaction and Biophysical Studies of Protein Folding and Protein Aggregation Surface using Multinuclear NMR Spectroscopy, Fluorescence, Microscopy and different Calorimetric Techniques.

Tanmay Dutta, Ph.D. (Calcutta University)
Associate Professor
Biochemistry, Enzymology, Molecular RNA Biology, Genetics.

Ashok K. Ganguli, Ph.D. (IISc, Bangalore)
Professor
Nanomaterials, Superconductors, Dielectric Oxides and Intermetallics.

Shivajirao L. Gholap, Ph.D. (IISc, Bangalore)
Assistant Professor
Natural Product Synthesis and Their Biological Studies, Development of New Synthetic Method and its Application in Organic Synthesis.

Chinmay K. Hazra, Ph.D. (Westfälische Wilhelms-Universität Münster)
Assistant Professor

V. Haridas, Ph.D. (NIIST, Trivandrum)
Professor
Chemical Biology of Peptides and Proteins, Biophysics of Peptide/Protein Folding.

Pravin P. Ingole, Ph.D. (University of Pune)
Associate Professor
Electrochemical Techniques, Electroanalysis, Nanomaterials.
Nidhi Jain, Ph.D. (Delhi Univ.)
Professor

Tarak Karmakar, Ph.D. (UNCASR, Bangalore)
Assistant Professor
Molecular Dynamics Simulations, Enhanced Sampling, Machine Learning, Applications in Biophysics, Materials, and Nano-Bio Systems.

Hemant Kumar Kashyap, Ph.D. (Jadavpur Univ.)
Associate Professor

Sunil Kumar Khare, Ph.D. (IIT Delhi)
Professor
Biochemistry, Enzyme Technology, Applied Microbiology Synthesis.

Subrata Kundu, Ph.D. (IIT Kanpur)
Assistant Professor
Synthetic Organometallic and Main-group Chemistry, Phosphorus Chemistry, Main-group Radicals.

Nidhi Jain, Ph.D. (Delhi Univ.)
Professor

Kuntal Manna, Ph.D. (Iowa State University, USA)
Assistant Professor
Homogeneous and Heterogeneous Catalysis, Metal-organic Frameworks.

Selvarajan Nagendran, Ph.D. (IIT Kanpur)
Professor
Chemistry of Group 13 and 14 Elements with Special Emphasis to the Low-valent Compounds of Silicon.

Siddharth Pandey, Ph.D. (Univ. of North Texas)
Professor

Nalin Pant, Ph.D. (Princeton Univ.)
Professor
Theoretical and Experimental Studies on Molecular Conformation, Molecular Recognition.

Sayantan Paria, Ph.D. (Indian Asso. for the Cultivation of Sci.)
Assistant Professor
Bioinspired Inorganic Chemistry, Water Oxidation, Nitrene Transfer, Late-transition Metal-oxo Complexes, Spectroscopic Characterization of Metastable Reaction Intermediates.

Arunachalam Ramanan, Ph.D. (IISc., Bangalore)
Professor
N.G. Ramesh, Ph.D. (IIT Madras)
Professor
Synthetic Organic Chemistry, Carbohydrate Chemistry, Asymmetric Synthesis.

Sudipta Raha Roy, Ph.D. (NIPER-Mohali)
Assistant Professor
Organic Synthesis, Catalysis, Organometallic Chemistry.

Soumik Siddhanta, Ph.D. (JNCASR, Bangalore)
Assistant Professor
Surface-enhanced Spectroscopic Techniques, Bioimaging, Bioanalytical Chemistry, Applications of Nanomaterials in Biology.

Sameer Sapra, Ph.D. (IISc., Bangalore)
Professor
Nanomaterials, Semiconductor Nanocrystals, Quantum Dots, Light Emitting Devices, Charge Transfer and Photovoltaics including DSSC and QDSC.

Sajesh P. Thomas, Ph.D. (IISc., Bangalore)
Assistant Professor
X-Ray Quantum Crystallography Studies of Weak Intermolecular Interactions, and Unusual Chemical Bonds; Crystal Engineering; Solid-State Formulation of Pharmaceutical Drugs; Design and Structure-Property Relations of Functional Molecular Materials; Computational Crystallography.

Jai Deo Singh, Ph.D. (Lucknow Univ.)
Professor
Chemistry of Chalcogens/Organo-chalcogens and their Applications in Organic Synthesis & Catalysis, Organic Metals and Superconductors.

Ravi P. Singh, Ph.D. (IIT Kanpur)
Associate Professor
Asymmetric Catalysis, C-H and C-F Activation, Total Synthesis of Small Molecules.

Ravi Shankar, Ph.D. (Panjab Univ.)
Professor
Inorganic Polymers, Organometallic Chemistry/Coordination Chemistry of Silicon, Germanium and Tin.

Janakiram Vaitla, Ph.D. (National Chemical Laboratory)
Assistant Professor
Sulfur Ylide Chemistry, Carbene Mediated Transformations, Synthesis of Natural Products, Conversion Carbon Dioxide to Valuable Chemicals, Activation and Functionalization of Relatively Inert Bonds, Photoredox Catalysis.

M. Ramu Yadav, Ph.D. (University of Hyderabad)
Assistant Professor
Co-operative Catalysis, Decarboxylative Reactions, New Fluorination Reactions, Asymmetric Catalysis, Artificial Metalloenzyme Catalysis.

B. Jayaram, Ph.D. (City Univ. New York)
Emeritus Professor
Biomolecular Modeling and Simulation, Physicochemical Model for DNA Sequence Analysis, Ab Initio Protein Structure Prediction, Active Site Directed Drug Design.

Ajai Kumar Singh, Ph.D. (Delhi Univ.)
Emeritus Professor
Organochalcogen Ligand Chemistry, Designing of Metal Complexes for Catalyzing Organic Reactions.

Ramakrishna Ramaswamy, Ph.D. (Princeton Univ.)
Visiting Faculty
Chaos and Nonlinear Dynamics, Computational and Systems Biology, Nonequilibrium Statistical Mechanics.
INTRODUCTION

The Department offers M.Sc., M.Tech. and Ph.D. programmes in Chemistry and also caters chemistry courses for B.Tech. students in engineering disciplines. It provides good opportunities for research at doctoral and post-doctoral level on a variety of topics in conventional and interdisciplinary areas of Chemistry. As a part of its academic activities, the department organises seminars, symposia, summer schools as well as winter workshops. It also undertakes industrial consultancy projects and has ongoing collaborative research projects in frontier areas with institutions in India and abroad.

ACADEMIC PROGRAMMES

POSTGRADUATE

M.Sc.

The Four-Semester Master of Science in Chemistry is designed to provide a broad-based training in physical, inorganic and organic chemistry. Courses in biochemistry and analytical chemistry are also included in the core programme. Students are offered choice of electives in various specialized areas like solid state chemistry, organometallic chemistry, statistical mechanics, bioorganic chemistry and immunochemistry. Students are required to also take two electives from outside the department. The project in second year initiates the students into research work in various branches of Chemistry.

M.Tech.

The M.Tech. Programme in “CHEMICAL SYNTHESIS & ANALYSIS” is one-of-a-kind programme in the country which provides advanced training in the design, synthesis, separation, and characterization of molecules while preparing students for careers in industry or academia. In addition, students are offered choice of electives in various specialized areas of chemistry, chemical and polymer engineering and management. It culminates in a year-long project where the foundation for scientific research is laid.

RESEARCH AREAS

The Department is actively engaged in research including doctoral research, in all contemporary areas of chemistry. Major disciplines include Analytical, Inorganic, Organic, Physical Chemistry and Biochemistry.

- **Analytical Chemistry**: Optical Spectroscopy, Environmental / Chemical Analysis, Electroanalytical Methods.
- **Inorganic Chemistry**: Organometallic Chemistry of Main Group/Transition Elements, Polyoxometalate
chemistry, Solid-state chemistry, Inorganic Polymers. Supramolecular Chemistry, Metallo porphyrins as Catalysts, Intermetallic Compounds, Coordination chemistry, Chemistry of Materials, Nanocrystalline Solids, Coordination Polymers, Crystal Engineering, Bio-inspired catalysis, Catalysis through Organometallic Compounds.

LABORATORY FACILITIES

The following equipments are available as part of the department facilities:

- Single Crystal X-ray Diffractometer (Bruker)
- Powder X-ray Diffractometer (Bruker)
- DPX-300 NMR Machine (Bruker)
- 500 MHz NMR
- FTIR Spectrometer (Nicolet, Protege 460)
- Electrochemical (CH Instruments) and Spectro-electrochemical set-up (Metrohm Autolab, PGSTAT-302N)
- UV-Visible Spectrophotometer (Lambda Bio 20 Perkin Elmer / Model 330, Hitachi, Beckman)
- Thermal Gravimetric Analyzer (Perkin Elmer)
- Differential Scanning Calorimeter (Perkin Elmer)
- C,H,N Analyzer 2400 (Perkin Elmer)
- Steady-State Fluorescence Spectrometer
- Fluorescence Lifetime Spectrometer
- Fast Protein Liquid Chromatography
- Gas Chromatograph (Dionex)
- Gel Permeation Chromatography
- High Pressure Liquid Chromatograph (Waters 1525) GPC
- Vapour Pressure Osmometer (Knauer)
- Polarimeter (Rudolph)
- Ion Chromatograph (792 Basic IC, Metrohm)
- Supercomputing Facility for Bioinformatics and Computational Biology
- Glass Blowing
- Polymerase Chain Reaction System
- Gel Documentation System
- CD Spectrometer
- Dynamic Light Scattering System
- Glove Box
- ESI MS/MS Mass Spectrometer (Bruker)
- Confocal Microscope (Nanonics)
DEPARTMENT OF CIVIL ENGINEERING
G.V. Ramana, Ph.D. (Rensselaer, USA)
Professor
Geotechnical Earthquake Engineering, Dynamic Site Characterization, Machine Foundations, Environmental Geotechnology, Geosynthetics.

B.J. Alappat, Ph.D. (IIT Bombay)
Professor

R. Ayothiraman, Ph.D. (IIT Madras)
Professor

Arnab Banerjee, Ph.D. (University of Auckland)
Assistant Professor

Sahil Bansal, Ph.D. (NTU Singapore)
Assistant Professor
Engineering Reliability Estimation, Risk and Loss Modelling, Uncertainty Quantification, Structural Health Monitoring, Optimal Design, Rare Event Simulation.

G.V. Ramana, Ph.D. (Rensselaer, USA)
Professor
Geotechnical Earthquake Engineering, Dynamic Site Characterization, Machine Foundations, Environmental Geotechnology, Geosynthetics.

Head of the Department

B.J. Alappat, Ph.D. (IIT Bombay)
Professor

R. Ayothiraman, Ph.D. (IIT Madras)
Professor

Arnab Banerjee, Ph.D. (University of Auckland)
Assistant Professor

Sahil Bansal, Ph.D. (NTU Singapore)
Assistant Professor
Engineering Reliability Estimation, Risk and Loss Modelling, Uncertainty Quantification, Structural Health Monitoring, Optimal Design, Rare Event Simulation.

G.V. Ramana, Ph.D. (Rensselaer, USA)
Professor
Geotechnical Earthquake Engineering, Dynamic Site Characterization, Machine Foundations, Environmental Geotechnology, Geosynthetics.

B.J. Alappat, Ph.D. (IIT Bombay)
Professor

R. Ayothiraman, Ph.D. (IIT Madras)
Professor

Arnab Banerjee, Ph.D. (University of Auckland)
Assistant Professor

Sahil Bansal, Ph.D. (NTU Singapore)
Assistant Professor
Engineering Reliability Estimation, Risk and Loss Modelling, Uncertainty Quantification, Structural Health Monitoring, Optimal Design, Rare Event Simulation.

G.V. Ramana, Ph.D. (Rensselaer, USA)
Professor
Geotechnical Earthquake Engineering, Dynamic Site Characterization, Machine Foundations, Environmental Geotechnology, Geosynthetics.

B.J. Alappat, Ph.D. (IIT Bombay)
Professor

R. Ayothiraman, Ph.D. (IIT Madras)
Professor

Arnab Banerjee, Ph.D. (University of Auckland)
Assistant Professor

Sahil Bansal, Ph.D. (NTU Singapore)
Assistant Professor
Engineering Reliability Estimation, Risk and Loss Modelling, Uncertainty Quantification, Structural Health Monitoring, Optimal Design, Rare Event Simulation.

G.V. Ramana, Ph.D. (Rensselaer, USA)
Professor
Geotechnical Earthquake Engineering, Dynamic Site Characterization, Machine Foundations, Environmental Geotechnology, Geosynthetics.

B.J. Alappat, Ph.D. (IIT Bombay)
Professor

R. Ayothiraman, Ph.D. (IIT Madras)
Professor

Arnab Banerjee, Ph.D. (University of Auckland)
Assistant Professor

Sahil Bansal, Ph.D. (NTU Singapore)
Assistant Professor
Engineering Reliability Estimation, Risk and Loss Modelling, Uncertainty Quantification, Structural Health Monitoring, Optimal Design, Rare Event Simulation.
N.K. Garg, Ph.D. (Wales Univ.)
Professor
Water Resources System, Finite Element, Watershed Modelling, Irrigation Management, CAD.

Ashok Gupta, Ph.D. (IIT Delhi)
Professor
Structural Engineering, Earthquake Engineering, Health Monitoring of Structures.

Supratic Gupta, Ph.D. (Nagoya Univ.)
Assistant Professor
Structural Engineering, Concrete Mechanics, Self Compacting Concrete, High Performance Concrete, Utilization of Fly Ash, Marble Powder and Granite Powder in Low Strength Concrete, Foam Concrete, High Strength Concrete and Fibre Reinforced Concrete.

Gazala Habib, Ph.D. (IIT Bombay)
Associate Professor
Source and Atmospheric Aerosol Characterization, Regional Air Quality, Health, Source Apportionment Modelling, Climate and Health Effect and Climate Modelling.

A.K. Jain, Ph.D. (IIT Delhi)
Professor
Design of RCC and Steel Structures, Earthquake Engineering, Wind Engineering, Offshore Structures, Dynamic Testing of Structures.

K.N. Jha, Ph.D. (IIT Delhi)
Professor

D.R. Kaushal, Ph.D. (IIT Delhi)
Professor

A.K. Keshari, Ph.D. (IIT Kanpur)
Professor
Groundwater Flow and Pollution Modelling, Remote Sensing and GIS, Hydrology, Optimization and FEM, EIA and Hydrogeological Hazard.

Rakesh Khosa, Ph.D. (IIT Delhi)
Professor

Sri Harsha Kota, Ph.D. (Texas A&M University, USA)
Associate Professor

Arun Kumar, Ph.D. (Drexel Univ.)
Associate Professor
Human Health Risk Assessment, Nanoparticles, Water Treatment, Decision-making, Emerging Contaminants.

N.M. Anoop Krishnan, Ph.D. (IISc., Bangalore)
Assistant Professor
Alok Madan, Ph.D. (SUNY Buffalo, USA)
Professor
Earthquake Engineering, Nonlinear Structural Dynamics, Concrete Structures, Computing in Structural Engineering, Structural Masonry.

J. Uma Maheswari, Ph.D. (IIT Madras)
Associate Professor
Design Management, Automation in Design and Construction, Digital Project Modeling including BIM.

B. Manna, Ph.D. (IIT Kharagpur)
Professor
Foundations for Industrial Machines, Dynamic Soil-Pile Interaction, Soil Dynamics, Foundation Engineering, Geotechnical Earthquake Engineering.

M. Manoj, Ph.D. (IISc., Bangalore)
Assistant Professor
Transportation Planning, Activity/Travel Demand Modelling, Long-Term Mobility Decisions, Travel Behaviour Data Collection, Built Environment and Travel Behaviour, Econometric Modelling.

Vasant A. Matsagar, Ph.D. (IIT Bombay)
Professor

A.K. Nema, Ph.D. (IIT Bombay)
Professor

Nezamuddin, Ph.D. (Univ. of Texas)
Assistant Professor
Transportation Network Analysis, Transportation Logistics and Optimization, Traffic Operations, Intelligent Transportation Systems, E-mobility.

Kalaga R. Rao, Ph.D. (IIT Kharagpur)
Professor
Mass Transit Planning, Traffic Flow Modelling and Travel Demand Modelling, Road Safety.

Manabendra Saharia, Ph.D. (University of Oklahoma, USA)
Assistant Professor

Dipti Ranjan Sahoo, Ph.D. (IIT Kanpur)
Professor
Supplemental Damping and Energy Dissipation, Earthquake Engineering, Performance Based Seismic Design, Strengthening, Retrofitting, Steel & Concrete Structure, Large-Scale Seismic Testing, Dampers.

J.T. Shahu, Ph.D. (IIT Kanpur)
Professor

Aravind K. Swamy, Ph.D. (New Hampshire Univ.)
Associate Professor
Geetam Tewari, Ph.D. (Univ. of Illinois)
Professor

Dhanya C.T. Ph.D. (IISc., Bangalore)
Associate Professor

V. Arya, Ph.D. (IIT Madras)
Assistant Professor
Biological Wastewater Treatment, Physico Chemical Treatment of Water and Wastewater, Removal of Emerging Contaminants, Advanced Oxidation Processes.

Prashanth Vangla. Ph.D. (IISc., Bangalore)
Assistant Professor
Interface Behavior of Particulate and Continuum Interfaces, Morphological Characterization of Soils Based on Digital Image Processing, 3D Printing in Geosynthetics and Granular Materials, Bio-inspired Geotechnics, Characterization and Quantification of the Pore Structures of Granular Materials, Site Characterization and Monitoring.

B. Bhattacharjee, Ph.D. (IIT Delhi)
Emeritus Professor
Durability of Concrete, Rebar Corrosion, Cement based Composites, Construction Technology, Building Science, Green Building, Sustainability.

A.K. Gosain, Ph.D. (IIT Delhi)
Emeritus Professor

Mukesh Khare, Ph.D. (New Castle Univ.)
Emeritus Professor
Air and Vehicular Pollution Modelling, Indoor Air Pollution, Urban Air Quality Management.

Shashi Mathur, Ph.D. (Delaware Univ.)
Emeritus Professor

K.S. Rao, Ph.D. (IIT Delhi)
Emeritus Professor
INTRODUCTION

The Civil Engineering Department at IIT Delhi was established along with the inception of the Institute in 1961. It now offers a regular four year Bachelors of Technology degree in Civil Engineering, and eight different M.Tech. Programs along with M.S. (Research) and Ph.D. Programmes in different frontier areas of research in Civil Engineering. The Department has faculty of international reputation and possesses laboratories/research/computational facilities comparable to any lead in university of the world. It promotes industry-academia interaction through consultancy services and undertakes cutting-edge research through sponsored research projects. The department also takes a lead role in ensuring that the advancements in Civil Engineering and Technology reach service professionals through training and continuing education programmes. The Department undertakes curriculum development activities by updating the existing course, developing new courses and preparing resource materials for teaching.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Undergraduate curriculum is broad-based and is designed to introduce the students to the wide range of problems encountered by civil engineers. The major components of the curriculum are Geotechnical Engineering, Structural Engineering, Water Resources Engineering, Environmental Engineering, and Transportation Engineering.

POSTGRADUATE

The Postgraduate courses of the Department cover a wide range and enable students to specialize in one of the programmes listed below and also to study courses in other fields of interest in the department. In addition, each M.Tech. student is required to do a major project which involves introduction to the methodology of research or design and development and submit a dissertation. The specialization in M.Tech. Programmes are:

- Construction Engineering and Management
- Environmental Engineering and Management
- Geotechnical and Geoenvironmental Engineering
- Rock Engineering and Underground Structures
- Structural Engineering
- Water Resources Engineering
- Transportation Engineering
- Construction Technology and Management (Industry Sponsored)
RESEARCH AREAS

The Department offers doctoral and post-doctoral research programmes in the following areas:

- **Design, Planning and Management,** Lean Construction, Automation in Design & Construction.

• **Transportation Engineering**: Travel demand modeling, Public transport planning and operations (BRT, Metro, LRT, Bus systems), Traffic engineering and management, Traffic flow modeling and simulation (heterogeneous traffic), Pedestrian dynamics and evacuation modeling, Transportation system analysis, E-mobility, Urban and regional transportation system planning, Planning and modeling of non motorized transport system (pedestrian, bicycles), Traffic safety, Accident prediction modeling, Highway safety analysis, Evaluation of pavement materials, Modeling of pavement materials, Pavement Design and Modelling Economic Analysis to Transportation Systems, Airport engineering, Continuum damage mechanics, Recycling of pavement materials, Bitumen rheology.

Doctoral research is being carried out in the following areas:

LABORATORY FACILITIES

- **Structural Engineering Laboratories** is a cluster of 11 laboratories, namely Concrete Structures Laboratory, Heavy Structures Laboratory, Materials Research Laboratory, Smart Structures and Dynamics Laboratory, Structural Analysis Laboratory, Structural Simulation Laboratory, Advanced Dynamics Laboratory, Construction Technology Laboratory and Construction Simulation Laboratory and Multiphysics and Multiscale Mechanics Laboratory, Multi-Hazard Protective Structures Laboratory. This laboratory cluster has facilities to test material strength and prototype structures. Some of the key equipment includes strain controlled dynamic compression testing machine (4000 kN), MTS actuator, mercury intrusion porosimeter, atomic force microscope, high temperature furnaces, differential scanning calorimeters, corrosion testing facilities, portable dynamic shaber, high tech data logging systems and special interrogation systems for structural health monitoring based on smart piezoelectric sensors. It houses fire furnace (1300° C) with universal testing machines. In addition, it has state-of-the art shake table and large strong floor for conducting destructive tests on large specimens.

- **Computational Laboratory** is equipped with two Xenon Servers with Windows 2003 server Edition, for domain control and as license server, 50 core 2 Duo/Quad systems with 4GB of RAM and Windows 7 Enterprise Operating System. All the systems are connected to IITD LAN through Gigabit switches. The laboratory is equipped with some of the latest software viz. Microsoft Office 2010, Microsoft Office projects 2007, ArcGIS V10.0, Bentley Civil Engineering Software including STAAD pro V8i, Microstation, MX Road, WaterGEMS, SewerGems, StormCAD, Matlab V2012a, ABAQUS V11.0, ANSYS V14.0, Plaxis 2D, RocScience, GeoStudio V2007, SAP2000 V15, Etabs V9.0, SAFE V14.0, SAFIR etc. The laboratory is also equipped with a 3000 ANSI Limens LED Projector mounted on the ceiling for conducting computer-aided tutorial classes and presentations. The laboratory has been equipped with PA system comprising of wired and wireless microphones and 6 speakers connected through a Digital Amplifier and a 12 Channel Mixer.

- **Soil Mechanics Laboratory** has facilities for testing soils under generalised stress-strain conditions (universal triaxial cell), under high confining pressures (up to 1400 kg/cm2), in large size specimens (100
mm diameter), and under partially saturated conditions. Computer controlled GDS triaxial test system is available. It has equipment for measurement of electric resistivity, thermal conductivity, testing soils under dynamic conditions, etc. and for model tests. Equipment to carry out field investigations by drilling boreholes, standard penetration tests, collection of undisturbed samples, plate load tests, dynamic cone and static cone penetration tests are available. A specially built tank 7x3x3 m. with a reaction frame of 40 ton. capacity to test prototype models of retaining walls (active and passive conditions), bridge abutments, geotextile reinforced walls, pile foundations, and footings, to study the thermal conductivity of soils, stability of model submarine pipelines, pullout behaviour of model anchors and skin friction behaviour of model piles. Facilities have been developed for the assessment of strength and friction behaviour, hydraulic behaviour, construction serviceability of geosynthetics (both natural and polymeric). Soil dynamics testing facilities include SASW for soil profiling, block vibration test, dynamic pile load test etc. MASW Shear wave velocity field testing apparatus, Geosynthetics test equipment for pullout, interface and sliding.

- **Rock Mechanics Laboratory** has facilities to test intact rocks and jointed rock masses, to model and test the modelled materials. The laboratory has the following equipment: a loading frame (500 ton vertical load, 100 ton lateral load) to test up to 70 x 70 x 70 cm. Specimens, with system for monitoring cell pressures and volume changes, loading and unloading sequences, biaxial and triaxial testing unit (up to 1400 kg/cm²), triaxial (200 kg/cm²), oblique shear and double shear equipment, strain indicators, sonic wave velocity apparatus, borehole extensometer, core drill cutting and lapping machines. Laboratory extensions exist to study the foundations of dams, tunnels and strata control problems with 100 channel data logger.

- **Transportation Engineering Laboratory** has facilities to test aggregates, bituminous materials, bituminous mixes as well as soils. Digital Master Loader with the ability to test marshal and CBR specimens, connected with the data logger, Video Image processing system, Digital Video Camera, Software MX-ROADS, CUBE. The laboratory is also equipped with accelerated polishing equipment, skid resistance tester, automatic vehicle counting devices, etc. Pavement evaluation by Profilograph, Roughometer and Benkelmann beam apparatus. Traffic data collection system (viovision), Rut tester, Dynamic shear rheometer.

- **Environmental Engineering Laboratory** is equipped to examine water and wastewater chemically, physically, bacteriologically and biologically. Filtration columns, pilot scale rotating biological contactors, mini ion exchange plant, Simulated landfills, cold model re-circulating fluidized bed reactor, etc. are available for conducting research. It has the facilities of a constant temperature room and a dark room with a microbiological camera. An advanced instrumentation room houses modern equipments e.g. GCMS, AAS, HPLC, microprocessor based UV 2000 spectrophotometer, TOC Analyzer, digital gas liquid chromatograph, Dedicated microbial quality facility, digital electronic ion analyser, flame photometer, Digital Balance, Microbalance, digital microprocessor based DO and Ion meter, digital pH controller, indoor air quality monitor, air velocity meter, handy air samplers,
respirable dust monitors, Bio-aerosol Sampler, Stack monitoring kit, Indoor air quality chamber, Bomb calorimeter and many other allied analytical equipments for the analysis of water / wastewater / air / organics / inorganics / metals. Besides, flue gas analyzer, RSPM Monitor for monitoring PM10 and Impactor based PM 2.5 monitor, multi-stream cyclon based monitor, Ozonator and Weather station are available.

- **Surveying and Remote Sensing Laboratory** is equipped with precise survey instruments for field surveying like Total, Station, GPS, Digital & Auto Level, etc. Precise angle measuring equipment measuring upto 1” and electronic distance measuring equipment of accuracy 1:50,000 are also available.

- **Engineering Geology Laboratory** is equipped for research work in the field of geochemistry, geophysics and industrial mineralogy, qualitative assessment of minerals for hydroelectric projects can be carried out. Data base is available for preparing landuse map of any area in India. PCs with large variety of softwares are available to process the geological data. There is a good geological museum with large collection of minerals, rocks, fossils and models.

- **Water Resources Simulation Laboratory** has two components. The laboratory is equipped with latest computational tools available in the area of Water Resources. The laboratory is equipped with 35 core2 Duo and i7 processors, LAN facilities for satellite image processing and application softwares dealing with ARCGIS and Expert System (LEVEL 5 OBJECT). Experimental facilities include Advanced Hydrologic System, Hydraulic Work Bench, Spectrophotometer, Ion Meter and other instruments for carrying out a detailed water quality analysis. River Hydraulics Facility in the form of two flumes enables model studies, sediment transport analysis, dam break and flood wave propagation studies. Bench scale test facility for slurry transportation pipeline systems is also available.
Sanjiva Prasad, Ph.D. (Stony Brook Univ.)
Professor
Semantics and Verification, Programming Languages, Concurrent Systems, Formal Foundations of Networks and Security.

Chetan Arora, Ph.D. (IIT Delhi)
Associate Professor and Pankaj Gupta Faculty Fellow
Computer Vision and Machine Learning.

Sorav Bansal, Ph.D. (Stanford Univ.)
Associate Professor (Microsoft Chair)
Compiler Design and Optimization.

Amitabha Bagchi, Ph.D. (Johns Hopkins Univ.)
Professor
Data Algorithmics and Analytics, Probability and Networks.

Srikanta Bedathur, Ph.D. (IISc., Bangalore)
Associate Professor (DS Chair of Artificial Intelligence)
Data Management, Knowledge Discovery and Data Mining, Information Retrieval.

Nikhil Balaji, Ph.D. (Chennai Mathematical Institute)
Assistant Professor and TBO Group Faculty Fellow
Automata Theory, Quantitative Verification, Computational Complexity.

Abhijnan Chakraborty, Ph.D. (IIT Kharagpur)
Assistant Professor and TBO Group Faculty Fellow

M. Balakrishnan, Ph.D. (IIT Delhi)
Professor (Microsoft Chair)

Ashish Chiplunkar, Ph.D. (IIT Bombay)
Assistant Professor and Pankaj Gupta Faculty Fellow
Algorithm Design, Stochastic Problems.

Subhashis Banerjee, Ph.D. (IISc., Bangalore)
Professor (Ministry of Urban Development Chair)
Computer Vision, Real-time Systems, Robotics.

Keerti Choudhary, Ph.D. (IIT Kanpur)
Assistant Professor and TBO Group Faculty Fellow
Fault-Tolerant Algorithms, Extremal Graph Structures, Dynamic Algorithms, Graph Realizability.
Naveen Garg, Ph.D. (IIT Delhi)
Professor (Janaki and K.A.Iyer Chair)
Algorithms, Optimization.

Rahul Garg, Ph.D. (IIT Delhi)
Professor

Ragesh Jaiswal, Ph.D. (Univ. of California, San Diego)
Associate Professor
Algorithms, Complexity Analysis.

Abhilash Jindal, Ph.D. (Purdue University)
Assistant Professor and Tbo Group Faculty Fellow
Operating Systems, Mobile Systems, Program Analysis

Prem Kalra, Ph.D. (EPFL, Switzerland)
Professor
Computer Graphics, 3D Animation.

S. Arun Kumar, Ph.D. (TIFR, Bombay)
Professor
Semantics and Verification.

Amit Kumar, Ph.D. (Cornell Univ.)
Professor (Jaswinder & Tarvinder Chadha of Operations Research Chair)
Algorithms, Combinatorial Optimization.

Subodh Kumar, Ph.D. (Univ. of North Carolina)
Professor (Uma-Puruskar-Liril Gupta Chair in Future Computing Technologies)

Venkata Vivek Kumar Koppula, Ph.D.
(University of Texas, Austin)
Assistant Professor and Pankaj Gupta Faculty Fellow
Quantum Cryptography, Lattice based Cryptography, Code Obfuscation.

Vireshwar Kumar, Ph.D. (Virginia Polytechnic Institute and State University (Virginia Tech))
Assistant Professor and Tbo Group Faculty Fellow

Mausam, Ph.D. (Uni. of Washington, Seattle)
Professor (Jai Gupta Chair)
Artificial Intelligence, Natural Language Processing, Machine Learning.

Rahul Narain, Ph.D. (Univ. of North Carolina)
Assistant Professor and Pankaj Gupta Faculty Fellow
Preeti Ranjan Panda, Ph.D. (Univ. of California, Irvine)
Professor (Prof. Anshul Kumar Chair)

Kolin Paul, Ph.D. (Bengal Engineering College, Calcutta)
Professor (Microsoft Chair)

Rohan Paul, Ph.D. (University of Oxford)
Assistant Professor and Pankaj Gupta Faculty Fellow

Maya Ramanath, Ph.D. (IISc., Bangalore)
Associate Professor
Database Systems and Information Retrieval, Semantic Web Data Management Including Information Extraction, Query Processing, Result Ranking and Reasoning.

Sayan Ranu, Ph.D. (Univ. of California, Santa Barbara)
Associate Professor (Nick McKeown Chair)
Data Mining, Network Science, Spatiotemporal Data Analytics, and Bioinformatics.

Huzur Saran, Ph.D. (Univ. of California, Berkeley)
Professor
High Speed Networks, Graph Theory & Algorithms.

Parag Singla, Ph.D. (Uni. of Washington, Seattle)
Associate Professor
Neuro Symbolic Reasoning, Probabilistic Graphical Models, Machine Learning, Artificial Intelligence.

Subodh Vishnu Sharma, Ph.D. (University of Utah)
Assistant Professor

Smruti Ranjan Sarangi, Ph.D. (Univ. of Illinois)
Associate Professor (Usha Hasteer Chair)
Computer Architecture, Operating Systems, Cyber Security, IoT.

Aaditeshwar Seth, Ph.D. (Univ. of Waterloo)
Associate Professor
Information and Communication Technologies for Development, Media Analysis, Computer Networks.

Rijurekha Sen, Ph.D. (IIT Bombay)
Assistant Professor and Pankaj Gupta Faculty Fellow
Mobile and Embedded Systems (Hardware Architecture, OS, Sensing, Efficient Processing, Security), Computational Sustainability.
Anshul Kumar, Ph.D. (IIT Delhi)
Emeritus Professor
CAD for VLSI, Computer Architecture.

Subhash Bhalla, Ph.D. (IIT Delhi)
Visiting Faculty
New Query Languages for Web-users, Distributed Information Systems, Management of Voluminous Data.

B.N. Jain, Ph.D. (Stony Brook University)
Honorary Professor

S.N. Maheshwari, Ph.D. (Northwestern Univ.)
Honorary Professor
Algorithms, Parallel Processing, Information Systems.

Deepak Kapur, Ph.D. (MIT, USA)
Honorary Professor
Formal Methods, Program Analysis, Distributed Computing and Social Aspects of Computing.

Umesh Vazirani, Ph.D. (UC Berkeley)
Honorary Professor
Quantum Computing.

Anish Arora, Ph.D. (UT Austin)
Adjunct Faculty
Dependable Distributed and Networked Systems.

Karthikeyan Bhargavan, Ph.D. (University of Pennsylvania)
Adjunct Faculty
Security and Privacy, Formal Verification.

Sanjeev Khanna, Ph.D. (Stanford University)
Adjunct Faculty
Theoretical Computer Science.

Gopalan Nadathur, Ph.D. (University of Pennsylvania)
Adjunct Faculty
Programming Language.

Yogish Sabharwal, Ph.D. (IIT Delhi)
Adjunct Faculty
High Performance Computing Group
IBM India Research.

Rajeev Shorey, Ph.D. (IISc, Bangalore)
Adjunct Faculty
Communication Networks, Data Analytics, Machine Learning and Artificial Intelligence.

Gautam Shroff, Ph.D. (Rensselaer Polytechnic Institute)
Adjunct Faculty
INTRODUCTION

IIT Delhi has been active in Computer Science education and research since the early 1970s. The Department of Computer Science and Engineering was established in 1982. It currently has 35 full-time faculty members, all with PhDs from leading institutions and recognised in their fields of expertise, with a plan to grow to around 42 in the coming two years. Apart from full time faculty members, the Department currently has several distinguished honorary and emeritus professors, adjunct faculty from leading research laboratories and international universities, and several visiting faculty members, all of whom participate in teaching and research activities.

ACADEMIC PROGRAMMES

The CSE department currently offers a 4 year B.Tech., a 5-year Integrated Dual Degree (B.Tech. + M.Tech.), M.Tech., M.S. (Research) and Ph.D. programmes in Computer Science and Engineering. It offers a minor area programme for non-majors, as well as 6 specialisations each for B.Tech. and M.Tech. students. Undergraduate students from other disciplines can join the M.Tech. programme with Advanced Standing. In addition, the department participates in interdisciplinary M.Tech. programmes in VLSI Design, Tools & Technology, the Ph.D. and M.S. (Research) programmes of the Khosla School of Information Technology, the Bharti School of Telecommunication M.Tech. programmes, and will participate in interdisciplinary programmes in Cyber-security and Machine Learning and Artificial Intelligence. The curricula are in line with current international trends, and are also used as model curricula by other Indian universities and colleges.

The current student strength in the department is about 658 (336 in Undergraduate, 173 in Dual Degree, 94 in Masters and 55 in Doctoral programmes). Admission to the programmes is highly competitive - for the undergraduate and dual-degree programmes, there is a nation-wide Joint Entrance Examination (JEE) Advanced. At the Masters/Ph.D. level, only students with a score of 99 percentile or better in the nation-wide GATE exam are offered admission. A significant number of employed computer professionals are also enrolled in our postgraduate programmes as sponsored candidates.

The curricula are comprehensive in their coverage of various aspects of computer science including algorithms and computational theory, architecture and systems software; networks; reliability and security; data analytics; graphics, vision and computing applications, especially those involving AI and machine learning. The emphasis is on design, methodology, analysis and good software practices. As part of the degree requirements, undergraduate, dual-degree and masters students are expected to complete a two-semester project which may involve developing a subsystem that typically contributes to fulfilling the objectives of a research project.

RESEARCH AREAS

- Algorithms and Complexity Theory: (associated faculty: Amitabha Bagchi, Ashish Chiplunkar, Naveen Garg,

Algorithmic graph theory, Computational geometry, Randomized algorithms, Approximation algorithms, Complexity theory, Online algorithms, and Cryptography.

- **Artificial Intelligence (AI) and Machine Learning (ML):** *(associated faculty: Chetan Arora, Amitabha Bagchi, Subhashis Banerjee, Srikanta Bedathur, Rahul Garg, Mausam, Rohan Paul, Sayan Ranu, Aaditeshwar Seth, Parag Singla, Abhijnan Chakraborty and Vireshwar Kumar).*

 Reinforcement learning and AI planning, Neuro-symbolic ML, Probabilistic graphical models, Statistical relational learning, Extreme classification, Embodied artificial intelligence, Ethical AI, Fairness and reliability in ML, Privacy issues in ML, ML for social networks, ML applications to healthcare, AI for crowdsourcing, Knowledge-based AI, Computational advertising, AI for robotics.

- **Natural Language Processing (NLP):** *(associated faculty: Srikanta Bedathur, Rahul Garg, Mausam and Maya Ramanath).*

 Intelligent information systems, Information extraction, Question answering, Dialog systems, Knowledge-base completion, Neural architectures for NLP.

- **Databases and Data Analytics:** *(associated faculty: Srikanta Bedathur, Amitabha Bagchi, Mausam, Maya Ramanath, Sayan Ranu, Aaditeshwar Seth, Parag Singla and Abhijnan Chakraborty).*

- **Architecture and Embedded Systems:** *(associated faculty: M. Balakrishnan, Preeti Ranjan Panda, Kolin Paul, Smruti Ranjan Sarangi, Rijurekha Sen and Anshul Kumar).*
Hardware-software co-design, Embedded systems design, Reconfigurable computing, Fault-tolerant computing, Hardware implementations, Temperature-aware architectures, Energy-efficient architectures, Design-for-debug, Cache memory, 3D and non-volatile memory, Architectural extensions for mobile security, Architectures for machine learning, Architectures for computer vision, Secure architectures.

- **Graphic, Vision and Human-Computer Interfaces:** (*associated faculty:* Chetan Arora, Subhashis Banerjee, Prem Kalra, Subodh Kumar and Rahul Narain, Rahul Garg and Rohan Paul).
 Computer graphics, Virtual reality, Computer vision, Digital image and video processing, Mobile multimedia, Embedded computer vision, Robotic vision, Medical image analysis.

- **Computer Networks and Distributed Systems:** (*associated faculty:* B.N. Jain, Huzur Saran, Rijurekha Sen, Aaditeshwar Seth and Vireshwar Kumar).

- **Programming Languages, Semantics and Verification:** (*associated faculty:* Sorav Bansal, S. Arun-Kumar, Sanjiva Prasad and Subodh Sharma).
 Programming language semantics, Theory and practice of concurrent systems, Process algebras, Distributed computing, Program analysis and verification, Logic in computer science, Applications of verification in network models, multiprocessors, and relaxed memory models and Language-based security.

 Compiler design, mobile operating systems and device drivers, Virtualization, Operating systems for IoT systems.

- **Information and Communication Technologies for Development:** (*associated faculty:* M. Balakrishnan, Kolin Paul, Rohan Paul, Aaditeshwar Seth and Rijurekha Sen).
 Poverty mapping, Urbanization, Bias in mass media, Computer systems for less-literate populations, Content distribution in rural areas, Community radio, Community media, Mobile health, Assistive Technology, Governance and accountability.

- **Neuroinformatics and Medical informatics:** (*associated faculty:* Chetan Arora and Rahul Garg).
 Brain Imaging, Functional MRI (fMRI), Electroencephalography (EEG), Near-infrared spectroscopy (NIRS), Human Functional Connectome.

- **Cyber Security and Secure Information Systems:** (*associated faculty:* Ragesh Jaiswal, Sanjiva Prasad, Huzur Saran, Smruti Ranjan Sarangi, Subodh Sharma, Venkata Koppula and Vireshwar Kumar).
Sponsored Research and Funding
The CSE Department faculty works on funded research projects in all areas of computer science research. Currently funded project budgets amount to around ₹569 million, of which around ₹500 million is from Indian government agencies, about ₹70 million from Indian and international industrial sources. The department also participates in institutional computing and network infrastructure projects worth ₹188 million (79 million from internal sources, 13.5 from industrial sources and 95.5 million from other government sources) million and interdisciplinary projects with other departments worth ₹40 million. In addition, current faculty consultancies are worth approximately ₹7 million.

LABORATORY FACILITIES
Computing resources in the department include several high-end servers, server clusters, and data storage systems. All of these are networked and connected to more than 150 PCs and workstations. Every faculty member, staff and Ph.D. student has a fully networked workstation with access to the Internet and adequate long term storage space in the central repository. Every undergraduate and postgraduate student is also given full access to the Internet and the Department servers. Besides. All laboratories in the Department also provide full access to the internet and to the central repository. Other major equipment include EDA software, multi-million gate FPGA based prototyping and validation system, robot platforms etc. The PCs and workstations are connected through 10/100 mbp/s links. The departmental network is connected to the Institute-wide network through two 10Gbps links switched fiber optic line with 10 Gbps link to the outside world.

The major laboratories are:

- **General Computing Lab**: This laboratory supports the general purpose computing needs of most students. It houses more than 70 workstations and provides full email and internet access. The servers provide the software required for laboratories in most of the Department courses.

- **Digital Hardware Design Lab**: This laboratory supports the training and project needs of students in the area of digital hardware design. Facilities include microprocessor based system design and FPGA based design equipment.

- **Advanced Networking Lab**: Besides providing access to ERNET and internet services, the laboratory supports development of multimedia communications and applications, ATM protocol stack, wireless and mobile communications, network security and simulation studies in high-speed networks.

- **Vision & Graphics Lab**: This laboratory supports development efforts in two areas, namely real-time vision and graphics. The facilities include the latest graphics workstations, robot manipulators, computing clusters, virtual reality and other state of the art equipment.
• **VLSI Design & Tool Lab**: This laboratory, established in 1996 with support from Philips Semiconductors as part of the VLSI Design, Tools and Technology programme houses a state-of-the-art CAD facility consisting of several servers and workstations. P4 clients, X-terminals, plotter and VLSI design software. The CAD facility features in-house, commercial and public domain software (including Cadence and Synopsys) for VLSI synthesis and simulation.

• **Database and Analytics Lab**: This lab features multiple high-end servers and GPU clusters, along with a number of state of the art workstations. Work in this lab is primarily on addressing scalability challenges in managing and analyzing structured and unstructured data including relational, graph, textual and streaming data.

• **Verification Lab**: This laboratory hosts several workstations supporting various specialized model-checking and verification tools.

• **Architecture Lab**: This lab houses state of the art workstations, and a Dell storage server for supporting research activities in high performance computer architecture and modern embedded systems.

• **Cyber Security Research Lab**: The mandate of the cyber security lab is to carry out fundamental research in the areas of Cryptography, Computer Systems & Network Security and Advanced Information Systems Security. The main focus is on developing provably secure algorithms to meet the efficiency and security demands of emerging technology trends such as cloud computing.

• **Data Analytics Lab**: Data analytics as a field of computer science is comparatively new and is an amalgamation of other fields such as data management, information retrieval, machine learning, natural language processing, data mining and statistics. It is concerned with consuming and processing large amounts of diverse data, including, text (HTML web pages, online books, scientific publications, etc.), structured data (for example, data residing in database systems), video, audio, etc. to derive useful insights. The current focus of the lab is on processing large scale text-data and large scale graphs. Open Information Extraction, Coherent Large-Scale Multi-Document Summarization, AI Applications to Crowd-sourcing, Commonsense Knowledge Extraction and Natural Language Processing over Microblogs.

• **Cloud Computing Lab (HIPC Lab)**: The lab contains infrastructure facilities for research in high-performance computing, operating system and compiler design, distributed and cloud computing.

• **The Dynamics Lab**: This lab works on works on a number of current problems in nonlinear science, ranging from a study of time delay dynamics to dynamical chimeric states, to problems of computational neuroscience, systems biology, and nonequilibrium statistical physics.

• **SAPIEnt Lab**: Systems & Algorithms Protecting Indian Environment. The word SAPIEnt itself means humans, for whom we need to take good care of the environment. This Lab is works on road traffic measurement and management, Air Pollution measurement and Analysis.
DEPARTMENT OF
DESIGN
P.V. Madhusudhan Rao, Ph.D. (IIT Kanpur)
Professor
Product Design and Realization, Computer Aided Design & Manufacturing.

Head of the Department

Jay Dhariwal, Ph.D. (IIT Bombay)
Assistant Professor

Subir Dey, Ph.D. (IIT Guwahati)
Assistant Professor

Gourab Kar, Ph.D. (Cornell University)
Assistant Professor
Human Factors and Ergonomics; Sedentary Behaviour and Health; Universal/Inclusive Design; Environmental Design Research; Social and Cultural Factors in Design.

Jyoti Kumar, Ph.D. (IIT Guwahati)
Associate Professor

Charu Monga, Ph.D. (IIT Guwahati)
Assistant Professor
Visual communication, Animation, Filmmaking, Storytelling, Digital Media, Game Design, Cultural Construction, Design Research.

Sumer Singh, Ph.D. (IIT Delhi)
Assistant Professor

Aneesha Sharma, Ph.D. (IIT Bombay)
Associate Professor

Srinivasan Venkataraman, Ph.D. (IISc., Bangalore)
Assistant Professor

Sabyasachi Paldas
Professor of Practice
Industrial Design, Product Detailing.

Pramod Khadilkar, Ph.D. (IISc., Bangalore)
Visiting Faculty (Full time)

P. V. Madhusudhan Rao, Ph.D. (IIT Kanpur)
Professor
Product Design and Realization, Computer Aided Design & Manufacturing.
INTRODUCTION

Department of Design came into existence in the year 2017. Major objectives of creating this department are:

• Imparting high quality design education to produce industry-ready and socially conscious design professionals
• Create new leaders in design among both faculty and students.
• To inculcate design thinking among students and faculty across the campus.
• Advancing knowledge through high impact research in the area of design.
• To promote, nurture and advance the culture of design and innovation in the institute leading to significant contributions and breakthroughs impacting quality of human life.
• Playing major role in addressing some of the grand challenges facing our society/country by designing and delivering products/solutions through multi-disciplinary teams.
• Contribute to creation of intellectual property and entrepreneurial ecosystem in the institute and country.
• Contribute to betterment of institute campus ambience using design as a tool.
• To build flagship programmes in the area of design which can be replicated in other institutes/universities in our country.
• To promote increased interactions/collaborations with institutes/organizations worldwide working in this area design education and research.

ACADEMIC PROGRAMMES

Department of Design has identified following area of interest for its academic activities.

The faculty of Department of Design are responsible for running two postgraduate programme in the area of design namely Master of Design (M.Des.) in Industrial Design and Doctor of Philosophy (Ph.D.). Department has also started minor area in Design for B.Tech. students to specialize in. Department is in the process of launching Bachelor of Design (B.Des.) and B.Tech. (Design) programmes.
MASTER OF DESIGN PROGRAMME

The M.Des. programme caters to the requirement of industry for innovators and designers capable of creating high quality design of products for competitive markets. It is open only to graduates in Engineering and Architecture. The programme is of two years duration, and admission to the programme is through CEED. It involves extensive studio work with hands on practice and is a project based, industry and consumer oriented programme. The thesis projects are often supported by the industry and there is close interface with the industry throughout the programme of study. The programme emphasizes development of free hand conceptualization skills, CAD modeling skills on mid level platforms and above all design thinking skills and detailing over a diverse range of products.
DEPARTMENT OF ELECTRICAL ENGINEERING
Jayadeva, Ph.D. (IIT Delhi)
Professor
Machine Learning, Neuromorphic Engineering, VLSI Design, Swarm Intelligence Optimization.

Abhijit R. Abhyankar, Ph.D. (IIT Bombay)
Professor

Sumeet Agarwal, D.Phil. (Oxford Univ., U.K.)
Associate Professor

Soutik Betal, Ph.D. (University of Texas)
Assistant Professor
Nanorobotics, Electromagnetic Medical Devices and Implants, Nanofabrication, MEMS, Terahertz Devices, Electronic Devices and Sensors.

Shubhendu Bhasin, Ph.D. (Univ. of Florida)
Associate Professor

Manav Bhatnagar, Ph.D. (Oslo Univ.)
Professor

Debanjan Bhowmik, Ph.D. (University of California Berkeley)
Assistant Professor
Magnetism, Spintronics, Micromagnetics, Memory Devices, Condensed Matter Physics.

G. Bhuvaneshwari, Ph.D. (IIT Madras)
Professor
Power Electronics, Electrical Machines and Drives, Power Quality.

Ranjan Bose, Ph.D. (Pennsylvania Univ.)
Professor (Microsoft Chair)
Wireless Communications, Broadband Wireless Access, Ultra Wideband Communications (UWB), Information Theory and Coding.

Shouribrata Chatterjee, Ph.D. (Columbia Univ.)
Professor (NXP/Philips Chair)

Arpan Chattopadhyay, Ph.D. (IISc., Bangalore)
Assistant Professor
Communication and IoT Networks; Cyber Physical Systems: Design, Analysis, Control and Cyber-security, Blockchain; Signal Processing and Resource Allocation for Radar; Statistical Signal Processing; Networked Estimation; Applications of Reinforcement Learning.
S. Chaudhury, Ph.D. (IIT Kharagpur)
Professor (Dhananjay Chair)
Computer Vision, Multimedia Systems, Computational Intelligence.

Amol Choudhary, Ph.D. (University of Southampton, UK)
Assistant Professor

Swades K. De, Ph.D. (State Univ. of New York)
Professor
Communication Networks and Systems, Broadband Access and Mesh Networks, Performance Modeling and Analysis.

Anuj Dhawan, Ph.D. (State Univ. North Carolina)
Professor

Abhisek Dixit, Ph.D. (K U Leuven Belgium)
Associate Professor
Sub-10nm Logic CMOS Device Design and Characterization, CMOS Variability/ Reliability/Thermal-effects, Aggressively Scaled CMOS embedded DRAM (eDRAM) and SRAM cells, Compact Device Modeling and Process Design Kits (PDK), Modeling and Characterization of Si Solar-Cells and Modules.

Abhishek Dixit, Ph.D. (Ghent University)
Assistant Professor
Optical Networks, Fibre-Wireless Converged Networks.

Anandarup Das, Ph.D. (IISc., Bangalore)
Associate Professor
Power Electronics, High Power Multilevel Converters, Electric Drives, Modular Converters, Power Quality.

Subashish Datta, Ph.D. (IIT Bombay)
Assistant Professor
Linear Control Theory, Robust Control and LMIs, Graph Theoretic Control and Multi-agent Systems.

Tapan Kumar Gandhi, Ph.D. (IIT Delhi)
Assistant Professor
Computational Neuroscience, Neuro-Inspired Engineering, Biomedical Signal and Image Processing, Machine Learning, Assistive Technology.

Ankesh Jain, Ph.D. (IIT Madras)
Assistant Professor
Analog and Mixed Signal Circuit Design, Data Converters (ADC and DAC), Phase Locked Loop (PLL) and Clock Synthesizers, High Speed Circuit Design, Low Voltage Circuit Design.

Amit Kumar Jain, Ph.D. (IISc., Bangalore)
Associate Professor

Harshan Jagadeesh, Ph.D. (IISc., Bangalore)
Assistant Professor
S. Janardhanan, Ph.D. (IIT Bombay)
Associate Professor
Model Free Control, Robotics, Time-delayed Systems, Model Order Reduction, Controller Co-design, Functional Observation.

S. D. Joshi, Ph.D. (IIT Delhi)
Professor
Statistical Signal Processing, Image Processing, Theoretical Approach to Signal/Image Analysis.

I. N. Kar, Ph.D. (IIT Kanpur)
Professor
Robust Control, Mechatronics, System Identification, Intelligent Control, Non-linear Systems.

Subrat Kar, Ph.D. (IISc. Bangalore)
Professor (Ram and Sita Sabnani Chair)
Photonic Switching, Optical Networks, Computer Communication Networks.

M. Jagadesh Kumar, Ph.D. (IIT, Madras)
Professor

Sandeep Kumar, Ph.D. (IIT Kanpur)
Assistant Professor
Optimization, Signal Processing, Machine Learning, Graphical Models.

Brejesh Lall, Ph.D. (IIT Delhi)
Professor

Dhiman Mallick, Ph.D. (Tyndall National Institute, University College Cork)
Assistant Professor
MEMS, Energy Harvesting, Magnetic/Piezoelectric/Magnetoelectric Devices, Micro-power Management.

R. K. Mallik, Ph.D. (Univ. of Southern California)
Professor (JC Bose Fellow)
Communication Theory and Systems, Difference Equations, Linear Algebra.

S. Mishra, Ph.D. (R.E.C. Rourkela)
Professor (Power Grid Chair)

Bhaskar Mitra, Ph.D. (University of Michigan)
Assistant Professor
MEMS and Microfabrication, Microfluidics, Plastic MEMS, Microplasmas, Gas Phase Nanofluidics.
Saif Khan Mohammed, Ph.D. (IISc., Bangalore)
Associate Professor

Mashuq-un-Nabi, Ph.D. (IIT Bombay)
Associate Professor

Soumya Shubhra Nag, Ph.D. (IIT Kanpur)
Assistant Professor

Rakesh Kumar Palani, Ph.D. (Univ. of Minnesota, Minneapolis)
Assistant Professor

B.K. Panigrahi, Ph.D. (Sambalpur Univ.)
Professor
Power Quality, FACTS Device, Power System Protection, AI Application to Power System.

Deepak U. Patil, Ph.D. (IIT Bombay)
Assistant Professor
Optimal Control, Multi-Agent Systems, Switched and Hybrid Systems.

Shankar Prakriya, Ph.D. (Univ. of Toronto)
Professor
5G, Beyond 5G and 6G Communications.

Sumit K. Pramanick, Ph.D. (IISc., Bangalore)
Assistant Professor
High Frequency Link Converters, Multilevel Converters for Machine Drives, Grid Connected Converters, HVDC Circuit Breakers.

A.P. Pratosh, Ph.D. (IISc., Bangalore)
Assistant Professor
Vision and Image Processing Audio, Speech and Music Analytics And Learning (Deep Learning, Sequential Modelling And Transfer Learning).

Mustafijur Rahman, Ph.D. (University of Minnesota, Twin Citites, USA)
Assistant Professor

Sumantara Dutta Roy, Ph.D. (IIT Delhi)
Professor
Computer Vision and Image analysis, Pattern Recognition, Audio Data Retrieval and Analysis, Biometrics and Bioinformatics.

Mukul Sarkar, Ph.D. (Technical University of Delft)
Associate Professor
Bhim Singh, Ph.D. (IIT Delhi)
Professor (JC Bose Fellow)
Power Electronics, Electrical Machines and Drives, HVDC, FACTS, Power Quality, Renewable Energy, DSP Based Control of Power Converter and Drive.

Shaunak Sen, Ph.D. (California Inst. of Tech.)
Associate Professor
Control Systems, Dynamical Systems.

M. Veerachary, Ph.D. (University of the Ryukyus Japan)
Professor

Vivek Venkataraman, Ph.D. (Cornell Univ.)
Assistant Professor (Joint Faculty Phy/EE)

Nilanjan Senroy, Ph.D. (Arizona State Univ.)
Professor

Shaunak Sen, Ph.D. (California Inst. of Tech.)
Associate Professor
Control Systems, Dynamical Systems.

Bhim Singh, Ph.D. (IIT Delhi)
Professor (JC Bose Fellow)
Power Electronics, Electrical Machines and Drives, HVDC, FACTS, Power Quality, Renewable Energy, DSP Based Control of Power Converter and Drive.

Nilanjan Senroy, Ph.D. (Arizona State Univ.)
Professor

M. Veerachary, Ph.D. (University of the Ryukyus Japan)
Professor

Vivek Venkataraman, Ph.D. (Cornell Univ.)
Assistant Professor (Joint Faculty Phy/EE)

Nilanjan Senroy, Ph.D. (Arizona State Univ.)
Professor

Madhusudan Singh, Ph.D. (Univ. of Michigan)
Associate Professor

Seshan Srirangarajan, Ph.D. (University of Minnesota, USA)
Assistant Professor

V.K. Jain, Ph.D. (IIT Delhi)
Emeritus Professor
Noise Study and Modeling, Digital Communications, Data Communications and Optical Communications and Networks.

B. Bhaumik, Ph.D. (IIT Kanpur)
Emeritus Professor
Biological Neural Networks, Analog and Mixed Signal VLSI Circuits.

Madhusudan Singh, Ph.D. (Univ. of Michigan)
Associate Professor

Seshan Srirangarajan, Ph.D. (University of Minnesota, USA)
Assistant Professor

V.K. Jain, Ph.D. (IIT Delhi)
Emeritus Professor
Noise Study and Modeling, Digital Communications, Data Communications and Optical Communications and Networks.

Shaunak Sen, Ph.D. (California Inst. of Tech.)
Associate Professor
Control Systems, Dynamical Systems.

Vinod Chandra, Ph.D. (IIT Delhi)
Visiting Faculty

B. Bhaumik, Ph.D. (IIT Kanpur)
Emeritus Professor
Biological Neural Networks, Analog and Mixed Signal VLSI Circuits.

Manan Suri, Ph.D. (INPG, France)
Associate Professor
Non-volatile Memory, Neromorphic & AI Hardware, Semiconductor Cyber Security.

Vivek Venkataraman, Ph.D. (Cornell Univ.)
Assistant Professor (Joint Faculty Phy/EE)
INTRODUCTION

The faculty members of the department are involved in teaching and research in a wide variety of areas in electrical engineering.

The Department offers two under-graduate programmes and nine post-graduate and Ph.D. programmes. The Department offers instruction at the undergraduate and postgraduate levels with the aim of providing a sound background in the areas of electrical, electronics and computer engineering. The courses are tailored to the needs of technical manpower in the fast expanding fields of communications, computers, control, electronics and power engineering.

Apart from teaching, the Department is actively engaged in research, development, technology transfer, industrial consultancy, continuing education programmes, curriculum and laboratory development, software development and organization of seminars, workshops, and conferences in related areas. The department has active interaction with industries, alumni, governmental agencies and utilities.

The Department faculty actively participate with a number of interdisciplinary centres and programmes in the Institute through research, instructional activities, and human resource development projects. In particular, the department has a close interaction with Centre for Applied Research in Electronics, Bharti School of Telecom Technology and Management, the Industrial Design and Development Centre, the Centre for Energy Studies, the Centre for Biomedical Engineering, the Computer Science and Engineering Department, and the Department of Physics.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers B.Tech. in Electrical Engineering and B.Tech. in Electrical Engineering (Power and Automation). These two programmes with different focii provide the desired breadth and inter-disciplinary exposure to the students so that they can pursue any of the diverse areas of Electrical Engineering (e.g. Computer and embedded systems, design and fabrication of VLSI, intelligent robotic systems, cognitive and bio-inspired technologies, control systems, telecommunications and computer networking, wireless communication systems, signal and information processing, micro and nano-electronics, electromagnetic and electrochemical systems, power engineering, renewable energy, electrical transportation systems, green technologies etc.) either in an industry-based or research-based career.

The B.Tech. programme in Electrical Engineering (Power and Automation) concentrates on automation technologies and power engineering catering to the current needs of intelligent and effective energy management. Students of this B.Tech. Programme also have an option of specializing in specific areas by doing additional courses.
POSTGRADUATE

The Department offers M.Tech., M.S. (Research) and Ph.D. programmes in Electrical Engineering.

M.Tech. Programme

The Department offers six specialized postgraduate programmes leading to an M.Tech. degree:

- Communication Engineering.
- Computer Technology.
- Control and Automation.
- Integrated Electronics and Circuits.
- Power Systems.
- Power Electronics, Machines and Drives.

In addition, the Department jointly conducts industry sponsored interdisciplinary M.Tech. programmes specializing in:

- Opto-electronics and Optical Communications (jointly with Physics Department).
- VLSI Design, Tools and Technology (VDTT) (jointly with the Centre for Applied Research in Electronics and the Department of Computer Science and Engineering).
- Construction Technology and Management (jointly with the Civil Engineering Department and Mechanical Engineering Department).
- Telecom Technology and Management through the Bharti School of Telecommunication Technology and Management (jointly with the Department of Management).

The full-time M.Tech. programmes are normally of four semesters duration. The department has recently introduced a six semester (three year) M.Tech. programme, with enhanced scholarship. The students enrolled in this three year programme help in the development and maintenance of existing and upcoming laboratories. This gives them an opportunity to develop hands-on experience with state-of-the-art facilities.

M.S. (Research) Programme

The M.S. (Research) programme is appropriate for those wishing to pursue a career in research and development in the industry or for those pursuing a career in teaching. Unlike the students in the M.Tech. programme, the M.S. (Research) students are required to do a more exhaustive research project, and credit fewer number of courses.
RESEARCH AREAS

The Department offers a doctoral programme with a view to push the frontiers of knowledge and to explore new and emerging areas. Teachers in engineering colleges are particularly encouraged to enroll for the Ph.D. programme. The various research activities are coordinated by different research groups within the department. These groups also represent a broad classification of the research interests of the faculty. The different research areas covered by these groups are given below.

LABORATORY FACILITIES

The Department maintains a library, a departmental workshop and an ergonomically designed committee room equipped with video conferencing facility. The department has well equipped laboratories with extensive hardware and software facilities for teaching and research in the areas of basic:

- Electrical Engineering
- Measurement
- Communications
- Microwaves
- Integrated Optics
- Signal and Information Processing
- Optical Communications and Optical Signal Processing
- Computer Technology, Computation
- Multimedia and Distributed Computing
- Robotics and Distributed Control
- Microprocessor Development Systems
- Electronic and Optoelectronic Materials, and Device Fabrication.

Most electronic experiments within a frequency limit of 40GHz, can easily be conducted in the laboratory facilities of the department.
K.A. Subramanian, Ph.D. (IIT Madras)
Professor

Head of the Department

Sumit K. Chattopadhyay, Ph.D. (IIT Kharagpur)
Assistant Professor

Satyananda Kar, Ph.D. (IPR)
Assistant Professor
Atmospheric Pressure Plasma, Plasma Sources (DC, RF, MW), Plasma Diagnostics, ECR Plasma, PIII.

Subhendu Dutta, Ph.D. (IIT Bombay)
Assistant Professor

Supravat Karak, Ph.D. (IIT Kharagpur)
Assistant Professor
Organic Electronics, Polymer & Hybrid Solar Cells, Photodetectors, Sensors.

Tara C. Kandpal, Ph.D. (IIT Delhi)
Professor

Vamsi K. Komarala, Ph.D. (IIT Delhi)
Professor

Rahul Goyal, Ph.D. (IIT Roorkee)
Assistant Professor
Hydropower, Hydraulic Turbines, Experimental and Computational Fluid dynamics, Cavitation, Sand Erosion.

Vipin Kumar, Ph.D. (NTU, Singapore)
Assistant Professor
Electrochemical Energy Storage Using Metal-Sulfur Batteries, and Li-Ion/Na-Ion Supercapacitors.

K. Ravi Kumar, Ph.D. (IIT Madras)
Assistant Professor

Ramesh Narayanan, Ph.D. (Jadavpur Univ.)
Associate Professor
Fusion Energy, Plasma Sources in Different Geometries, with Emphasis on ECR and RF sources, Plasma Thrusters.
Sandeep Pathak, Ph.D. (University of Cambridge, U.K.)
Associate Professor
Fabrication of Perovskite Based Photovoltaic Devices, Photo-physical Properties.

Dibakar Rakshit, Ph.D. (The Univ. of Western Australia)
Associate Professor
Thermal Energy Storage, Building Energy Efficiency, Passive Air Conditioning, Battery Thermal Management (BTMS).

Kaushik Saha, Ph.D. (University of Waterloo, Canada)
Assistant Professor

Bibhuti Bhusan Sahu, Ph.D. (IIT Delhi)
Associate Professor
Plasma Science and Diagnostics, Technological Plasmas at Low and Atmospheric Pressures, Plasma Nanotechnology.

Debaprasad Sahu, Ph.D. (IIT Kanpur)
Assistant Professor
EECR, Plasma Thruster, Plasma based ion Implantation, Magnetized Plasma Dynamics.

R. Uma, Ph.D. (IIT Delhi)
Associate Professor

S.K. Tyagi, Ph.D. (CSS, Meerut)
Associate Professor

Ashu Verma, Ph.D. (IIT Delhi)
Associate Professor

T.S. Bhatti, Ph.D. (IIT Delhi)
Emeritus Professor

Viresh Dutta, Ph.D. (IIT Delhi)
Emeritus Professor

A. Ganguli, Ph.D. (IISc., Bangalore)
Emeritus Professor
Plasma Sources.

S.C. Kaushik, Ph.D. (IIT Delhi)
Emeritus Professor
INTRODUCTION
Energy forms an integral part of all the scientific and engineering disciplines. Since the demand for energy world-over has been leading to rise of known as well as future sources of energy. Study of energy resources and technologies for their efficient utilization has great impact on economic and social life of a country. Energy experts are needed for developing sustainable solutions for meeting energy demand without adversely affecting the environment. The Department has mandated itself in training and research in Energy Engineering for serving the energy needs of the country with special emphasis on energy efficiency, renewable and alternative energy technologies and energy-environment interaction.

ACADEMIC PROGRAMMES

UNDERGRADUATE
The Department offers a four year B.Tech. Programme in Energy Engineering. It is also offering several electives in the emerging areas of Energy and Environment for UG students as open category courses.

POSTGRADUATE
The Department offers the following post-graduate programmes, as full-time/part-time programme for Engineering graduates and Science post-graduates, leading to the award of M.Tech. Degree:

• M.Tech. in Energy Studies
• M.Tech. in Energy & Environment Technologies and Management
• M.Tech. in Renewable Energy Technologies and Management (sponsored students only)
• M.S.(R) in Energy Science & Engineering
• Ph.D.

RESEARCH AREAS
The major research groups of the centre are:

• Electrical Power and Renewable Energy Systems
• Plasma Science and Technology
• Solar-Thermal
• Energy Storage
• Internal Combustion Engines and Alternative Fuels
• Solar-Photovoltaics
• Wind and Hydro
• Energy Systems Simulation

The focused topics of doctoral and post-doctoral studies as well as sponsored research at the centre are:

• **Renewable Energy Technologies (Solar Photovoltaics, Solar Thermal, Biomass, Hydro and Wind):** Solar, wind, biomass, water and other energy sources are cleaner and perennial energy sources which the nature has provided for the use of mankind. The Department has done extensive work on solar thermal technologies and solar photovoltaic systems. Design of solar hot water systems, dryers, space heating/cooling systems, thermal power generation and industrial process heating systems is performed by using state-of-art software. Studies on developing clean and efficient biomass cookstoves have also been initiated.
The focus of the photovoltaics group has been on thin film based (2nd generation) and Dye-sensitized, Organic and Perovskite (3rd generation) solar cells fabrication and device analysis. The nanocrystalline materials for photo-electrochemical and organic solar cells are being developed. The studies also include implementation of nanophotonics concepts for enhancing solar cell performance, and silicon heterojunction solar cells based on amorphous silicon/crystalline silicon and carrier-selective contacts; perovskite-based photovoltaic devices and their long-term stability; understanding the correlation between photo-physical properties and microstructural properties of semiconducting thin films. Development of novel materials for low-cost and high-performance photovoltaic devices is also under progress.

Under organic solar cells, use of organic polymers and other related hybrid semiconducting materials to maximize efficiency in the collection and harvesting of solar energy is being studied. The research group mainly focuses on the physics, material science and device engineering with the aim to develop innovations that will lead to the better device performance and higher device energy efficiencies.

The solar-biomass-hybrid laboratory has the mandate for solar and biomass-hybrid applications including but not limited to heating, cooling, cooking and desalination. Some of the experimental setups such as, vapor compression heat pump, thermoelectric-cooler-generator (TEC/TEG) and biomass combustion device testing facilities are available for both M.Tech. and Ph.D. students. The required instruments like the portable gas analyzer, particulate matter analyzer (PM2.5 and PM1.0) bomb calorimeter and microbalance were procured during the last three years. The R&D works in the area of solar-biomass-hybrid refrigeration, biomass-solar-desalination, vapor adsorption, clean biomass combustion for cooling, heating, cooking, desalination, and other industrial applications is on-going.

The focus of the research in hydropower is to investigate the off-design and transient operations of the hydraulic turbines. The main objective of the study is to understand the flow dynamics inside the turbine using both experimental and numerical techniques during steady-state and transient operating conditions. The study also includes the investigations of cavitation and sand erosion in hydraulic turbines.

The wind energy is considered as one of the first kind of renewable energy sources after the evolution of the solar energy. Exergies in the wind power generation gains greater interests to the researchers in past few decades. Both HAWT and VAWT exhibited a remarkable and comparable performance. The research on the wind turbine focuses on performance enhancement and understanding of the mechanism of flow using experimental and numerical techniques.

- **Internal Combustion Engines and Alternative Fuels:** Globally, conscious efforts are being made to undertake research and development activities to facilitate transition towards low carbon options in all sectors of the economy. Promoting the use of alternative fuels as clean fuel in internal combustion engines/vehicles for transportation as well as for power generation is an important initiative in this context. The cutting-edge technologies for utilization of alternative fuels including methanol, ethanol, biogas, hydrogen, biodiesel and dimethyl ether in internal combustion engines are being developed. Life-cycle analysis and Greenhouse gases
of alternative fuels are being studied for screening of sustainable fuels for internal combustion engines. The hybrid technologies including IC Engines with Electric System, IC Engines with Fuel cells and IC Engines with renewable energy system are being studied. A strong research linkage with oil & gas industries and automotive engine manufacturers is fostered to develop the required technologies. The further research work is focused towards achieving sustainable energy and environment.

- **Energy Conservation and Management:** One of the main aims of buildings is to provide internal environment where one can have visual as well as thermal comfort. This is partly provided by an energy efficient building design and/or by providing energy efficient end use devices. By using sophisticated computer modelling, the building group in the Centre assists the architects to arrive at an optimum design to achieve better day lighting and minimize the air conditioning load. Additionally, the group can also undertake the design and fabrication of building automation systems to reduce energy related operating costs.

Thermal Energy Storage Studies pertaining to adequate façade to contrive a comfortable indoor environment with reduced active HVAC power requirements are carried out at Department of Energy Science & Engineering. This basically aims at designing thermally conducive environment for hot climatic conditions through deployment of phase change materials (PCMs) in building envelopes that can store the excess incoming heat through the envelope as latent heat (at constant temperature) and later release the stored heat to the colder ambient at night. In cold regions, PCMs packed under building floor can maintain a comfortable floor temperature for a long time by gradually releasing latent heat while undergoing phase change.

Besides this medium temperature range thermal energy storage system designs for perennial supply of thermal energy, required for non-conventional refrigeration and cooling system are also studied. Recently the Department started exploring ultra-high temperature thermal energy storage systems to store electrical spillage as ordained by the concept of thermal batteries.

The research activities, related to battery storage, that will be undertaken at Department will specifically focus on enhancing the energy storage capabilities of the electrochemical energy storage devices, such as lithium ion batteries, sodium-sulfur or lithium-sulfur batteries, and advanced batteries by employing nanoscale materials. These energy storage technologies would be used in combination with renewable energy sources (e.g., solar PV), and also to power electric vehicles, thus cutting down overall greenhouse gas emission and, thereby reducing global warming. The energy storage technologies that the Department is presently focusing on will be one of the vital components for the future of a “clean energy landscape”. Besides electrochemical energy storage devices, flexible and stretchable chemically and electrochemically active devices will also be developed to sense and monitor environmental degradation.

- **Fuel Technology:** The major challenge in effective utilization of Indian coals has all along been its high mineral content. In this context, initiatives have been taken at the IIT Delhi resulting in solubilization of the major part of the coal substance by extraction at the atmospheric pressure with combinations of polar organic solvents which are recycled. The extract is zero ash and can be treated as organic feedstock for further processing.
This process has been termed as organo-refining of coals contributing to the development of clean coal technology potentially useful for the coal based power generation and for steel power plants. Bioleaching and bio-solubilization have also been found suitable to dimineralise the coal. Other activities include conversion of coal to liquid, utilization of coal extracts for value added end-uses such as a chemical feedstock, conversion of the products of coal gasification to synthetic natural gas methane, coal delsulphurization etc.

- **Electrical Power and Renewable Energy Systems (EPRES):** The growing capacity of renewable energy based installations makes it necessary to develop efficient operation and control techniques to analyse and optimize the unbalanced distribution/transmission network. The intermittent nature and forecast uncertainties in renewable energy sources and loads must be considered in any analysis and design. The holistic grid/micro developments utilizing the energy management systems incorporating resource, demand side management, cloud/shared storage, effective use of battery/PV inverters, mobile loads in terms of electric vehicles etc. will lead to more certain and robust electrical systems. Many of the villages in India are electrified but have limited availability of the electricity. To address the technical challenges with respect to present and near-future scenario of the Nation, following research areas are the key focus of EPRES group:
 - Development of energy management systems (EMS) for microgrid operations, buildings.
 - Design and development of tools and techniques for distribution system operators (DSO) operation for LV/MV unbalanced distribution networks, power electronics based interconnects, Renewable based Multiple Distributed Generations, Electric Vehicles, etc.
 - Development of Power Converters for small, medium and high-power applications in Renewable energy.
 - Development of controls strategies for load frequency, voltage control and controller test facility for various types of micro-grids.

- **Plasma Science and Technology:** The plasma laboratory at IIT Delhi is a joint activity of Energy Science & Engineering and Physics Department with thrust on different types of plasma sources of relevance to the plasma processing industry. The chief mandate of this laboratory has been to investigate various types of plasma sources, notably the electron cyclotron resonance (ECR) sources, helicon plasma sources, RF and DC plasma sources with emphasis in the recent past being on applications of these sources for national/industrial/societal benefit. A high point in the lab’s achievements is the work done on large volume ECR plasmas which has two patents.

Extensive theoretical work has been undertaken on waves, instabilities in the ionosphere magnetosphere and laboratory (fusion) plasmas. Significant work on nonlinear dynamics of plasmas including self organization and chaos to study plasma behaviour at high power particularly in fusion phenomenon has also been carried out.

LABORATORY FACILITIES

Facilities are available in the Department for education and training as well as for facilitating industry-academia interaction.

• **Internal Combustion Engines and Alternative Fuels:** Facility to measure flame kernel growth, backfire, injection, ignition, combustion, performance and emissions characteristics of internal combustion engines for alternative fuels; Instruments include Non-dispersive Infrared (NDIR) analyzer, FTIR analyzer, smoke meter, piezo-electric transducer, optical encoder and sensor and combustion analyser; Advanced facilities include Research Engine, Backfire measurement in hydrogen fuelled engine, CRDI Engine test rig, hydrogen engine test rig, DME fuelled engine test rig, RCCI/HCCI combustion engine, methanol fuelled test rig with oxygen-combustion; Computational facility such as simulation/computational Fluid Dynamics software to study the important engine processes including backfire, injection, spray, ignition, combustion and emissions.

• **Plasma Science and Technology:** Plasma sources of different kind, viz. ECR (electron cyclotron resonance), RF (radio frequency), DC (direct current) etc. A Compact ECR Plasma Source (CEPS) for producing high density plasma; Large Volume Plasma System (LVPS) using multiple CEPS, for plasma processing application; Automated Langmuir probe system for plasma characterization; High resolution spectrometer for study of plasma emission spectroscopy; Microwave and RF atmospheric plasma jet, Plasma Simulation Facilities.

• **Energy Systems Simulations:** Simulations play a vital role in the research of energy studies at Department. Computer simulations are used by the faculty members from Electrical and Power Systems, Plasma Science and Technology, Solar Thermal, Internal Combustion Engines and Automotive Sprays research groups. High-end workstations and desktops are available at the computational laboratory of the Department. Energy Science & Engineering faculty members have also initiated integrating Artificial Intelligence with their simulation framework for further advancement in the predictions and analysis of performance of energy systems.
Angelie Multani, Ph.D. (Jawaharlal Nehru Univ.)
Professor
Indian Theatre in English, Culture Studies, Gender/Studies, Contemporary Fiction.

Ankush Agrawal, Ph.D. (IIGIDR, Mumbai)
Associate Professor
Development Economics, Applied Econometrics.

Vibha Arora, Ph.D. (Oxford Univ.)
Professor
Political Sociology, Environmental Sociology, Sociology of Development, Globalization and Transnationalism, Visual Anthropology, Medical Anthropology, Gender and Development, Social Research Methods, Sociological Theory, Sociology of South Asia, the Himalayan Region and their Diaspora.

Mahuya Bandyopadhyay, Ph.D. (University of Delhi)
Associate Professor

Arudra V. Burra, Ph.D. (Princeton University, USA)
Assistant Professor
Moral, Political, and Legal Philosophy.

Pritha Chandra, Ph.D. (Univ. of Maryland)
Professor
Linguistics, Theoretical Syntax, Language Acquisition (1/2nd), Politics of Language.

Sisir Debnath, Ph.D. (University of Virginia)
Assistant Professor
Development Economics, Applied Microeconomics, Health Economics.

Divya Dwivedi, Ph.D. (IIT Delhi)
Associate Professor
Philosophy of Literature, Aesthetics, Narrative Theory, Literary Theory, Gandhi Studies, Political Cartooning.

Arjun Ghosh, Ph.D. (Jawaharlal Nehru Univ.)
Associate Professor

Samar Husain, Ph.D. (IIIT Hyderabad)
Assistant Professor
Human Sentence Processing, Natural Language Parsing, Natural Language Modeling, Dependency Grammars, Cognitive Science.

Farhana Ibrahim, Ph.D. (Cornell Univ.)
Professor
Sociology of India, Nationalism and the Nation, State, Sociology of Religion, Historical Anthropology, Medical Anthropology, Migration, Kinship, Qualitative Research Methods.
<table>
<thead>
<tr>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yashpal A. Jogdand</td>
<td>Ph.D. (Univ. of St. Andrews)</td>
<td>Assistant Professor</td>
<td>Social Identity, Intergroup Relations, Humiliation, Prejudice and Stereotyping.</td>
</tr>
<tr>
<td>Ravinder Kaur</td>
<td>Ph.D. (Delhi Univ.)</td>
<td>Professor</td>
<td>Social Change, Sociology of Development, Gender, Kinship, Family and Marriage, Anthropological Demography, Sociology of India.</td>
</tr>
<tr>
<td>Sumitava Mukherjee</td>
<td>Ph.D. (IIT Gandhinagar)</td>
<td>Assistant Professor</td>
<td>Cognitive Science, Judgement and Decision Making.</td>
</tr>
<tr>
<td>Reetika Khera</td>
<td>Ph.D. (Delhi School of Economics)</td>
<td>Associate Professor</td>
<td>Economic Development, Education, Health and Nutrition, Indian Economy.</td>
</tr>
<tr>
<td>Bharati Puri</td>
<td>Ph.D. (Jawaharlal Nehru Univ.)</td>
<td>Associate Professor</td>
<td>Philosophy of Culture and History, Moral and Political Philosophy, Contemporary Thought and Intellectual History, Deep Ecology, Buddhism and Politics, Exile and Travel, Religion and Politics, Religion in East Asia, Peace Studies, Tibet/Tibetan Literature and Politics, Ethnicities and Margins, Culture Religion and Politics in Ladakh, Children and Literature.</td>
</tr>
<tr>
<td>Paroma Sanyal</td>
<td>Ph.D. (English and Foreign Languages University, Hyderabad)</td>
<td>Associate Professor</td>
<td>Phonology and Syntax, Theoretical Frameworks: Optimality Theory, Lexical Phonology, Distributive Morphology, Minimalism, Minor Research Area Language Teaching: English Language Teaching, Task-based Language Teaching.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richa Kumar</td>
<td>Ph.D. (Massachusetts Institute of Technology)</td>
<td>Associate Professor</td>
<td>Sociology of Agriculture, Sociology of Food and Nutrition, Science and Technology Studies (STS), Rural and Agrarian Policy.</td>
</tr>
<tr>
<td>Debasis Mondal</td>
<td>Ph.D. (ISI, Kolkata)</td>
<td>Associate Professor</td>
<td>International Trade, Economic Growth, Public Economics.</td>
</tr>
</tbody>
</table>
Simona Sawhney, Ph.D. (Univ. of California)
Associate Professor
South Asian Language and Literature, Postcolonial Literature and Theory, Sanskrit Literature, Literary Theory.

Kamlesh Singh, Ph.D. (Univ. of Rajasthan)
Professor

Purnima Singh, Ph.D. (Allahabad Univ.)
Professor

Varsha Singh, Ph.D. (IIT Bombay)
Associate Professor

Naveen Thayyil, Ph.D. (Tilburg University)
Associate Professor
Law, Techno-science and Democratisation, Regulatory issues in New and radical Technologies, Democratisation of Regulation of Technology, Risk Regulation, Use of ethics in Technology Regulation, Development of Technologies and Public Contestations, Public Participation in Regulation.

Jayan Jose Thomas, Ph.D. (IGIDR, Mumbai)
Professor
Labour, Capital and Technology in Indian Industrialization.

C.A. Tomy, Ph.D. (Univ. of Hyderabad)
Professor
Philosophy of Mind and Cognition, Philosophy of Science, Scepticism, Metaphysics and Self.

Milind Wakankar, Ph.D. (Columbia University)
Associate Professor
Indian Mystical Traditions and the Modern Critique of Caste.

Ashwini J. Vaidya, Ph.D. (Univ. of Colorado, Boulder)
Assistant Professor
Computational Linguistic.

Sanil V., Ph.D. (IIT, Kanpur)
Professor
Philosophical investigations into Art, Science, Technology, Literature and Social Sciences, Reason and Revolt, Violence, Hate and Revenge, Contemporary Indian thought, Intellectual traditions of Kerala, Philosophy of Biology.

Rukmini Bhaya Nair, Ph.D. (Cambridge Univ.)
Emeritus Professor
Linguistics, Philosophy of Language, Cognitive Science and Cultural Studies, Critical Theory, Postcolonialism, Gender, Creative Writing, Narratology.

Bijoy Boruah, Ph.D. (Uni. of Guelph, Canada)
Adjunct Professor
Philosophy.

V. Upadhyay, Ph.D. (McMaster University, Canada)
Adjunct Professor
Development Economics, Political Economy, Indian Economy.
INTRODUCTION

The Department of Humanities & Social Sciences is an integral part of the Indian Institute of Technology Delhi. The Department houses most of the major disciplines of Social Sciences and Humanities with disciplinary and multi-disciplinary Ph.D. programmes, as well as a diverse range of undergraduate elective courses at different levels. In addition to these, the Department also runs a Language Learning Centre for strengthening English Language skills. We also run short-term courses in French, German, Spanish and Japanese for students who wish to learn a foreign language.

ACADEMIC PROGRAMMES

UNDERGRADUATE

IITs are mandated to pursue teaching and research in science, technology and arts. IIT Delhi regards knowledge of Humanities and Social Sciences as a core value. All UG students must complete a minimum of 15 credits in HUSS courses. The courses offered for UG students are drawn from all the disciplines of the Department: Economics, Linguistics, Literature, Philosophy, Psychology, Policy Studies, and Sociology and some are also inter or multi-disciplinary. Courses are divided between 200 level and 300 level, and some advanced UG students may also choose to opt for 700 or 800 level courses, apart from doing an independent research paper in any of the HUSS disciplines.

Minor Area Programme: B.Tech. Minor Area Programme in Economics was initiated in 2017, which is very popular among the UG students.

POSTGRADUATE

Ph.D.

The Department has a robust Ph.D. programme which is both disciplinary as well as inter-disciplinary. We have both a full-time as well as part-time Ph.D. programme to enable those who may be working to continue their academics. HUSS is one of the few departments that offer a genuine interdisciplinary approach to academics that is both based on a strong disciplinary foundation and yet open to non-traditional ideas and approaches. We promote and support multidisciplinary work of the kind that is possible only when creative researchers from various disciplines are in close locational and intellectual proximity through pre-Ph.D. courses that provide a specialized disciplinary perspective as well as collaboratively taught courses which have a broader inter-disciplinary orientation. We also have Post-Doctoral positions where young doctorates are encouraged to continue their research in a supportive and intellectually exciting atmosphere.

M.Sc.

The Department has started two full-time M.Sc. programmes in Cognitive Science and Economics in the 2020-21 academic year.
M.Sc. in Cognitive Science: The programme will familiarize students with diverse theories, methods, and tools to understand the architecture and functioning of the human mind. It also envisages developing new state-of-the-art labs involved in finding better solutions to cognitive challenges and questions faced in the Indian scenario. It integrates teaching and learning through a multidisciplinary and diverse pedagogical curriculum. The MSc programme trains students to pursue academic careers and to work at the crossroads of academic-industry linkages for advancing and leading intellectual creation in the cognitive science space. The graduates from this programme could work in diverse sectors from basic research, brain sciences, management, engineering/design (robotics, smart software, and technology, human-machine interaction), social organizations; or decide to pursue higher education in cognitive science or any of its allied disciplines.

M.Sc. in Economics: The programme draws on the strengths of mathematics, computer science, and other science and engineering disciplines. It is designed for students with bachelors degree in any discipline with substantial knowledge in mathematics. The programme has a strong research component and consist of two-semesters long project that would prepare students for research. It aims to impart advanced training in economics with a focus on quantitative skills. The curriculum is designed so as to give exposure to broader issues related to developmental challenges in India and beyond. Students choose fields of specialisation in core economics and emerging areas at the intersection of economics with other social sciences as well as computer science and mathematics.

RESEARCH AREAS

LABORATORY FACILITIES

Cognitive and Behavioural Science (CBS) Laboratory: The CBS lab caters to the research needs of the Ph.D. scholars and faculty members. The lab is equipped with basic and state-of-the-art equipments in Cognitive Psychology and Psycholinguistics. This includes an SR research 1000 Plus eye-tracker. The lab has several PCs for conducting behavioural experiments. It also has a high performance computing server to handle computationally intensive research tasks.

Economics Laboratory: The Department has an Economics Laboratory, located in MS 627B. The laboratory provides access to computing facilities for research and training in economics and is very popular among our Ph.D. students for research and collaborative work. The computers in the labs are equipped with popular open source and proprietary packages like R, STATA, Matlab, and Python. The Department has subscriptions to database such as ASI, EPWRF, NSSO, and PRIME.

Another computing laboratory, jointly for the M.Sc. students of Cognitive Science and Economics programmes, is coming up shortly.

The Department has a Language Learning Centre offering support to all first year students to enhance their language and communication skills. Besides, we have several other tools useful for research including cloud computing, Grammarly, and access to a centralised supercomputing facility. The central library of the Institute subscribes to several journals from different publishers including Elsevier and collections such as JSTOR and is also a part of DELNET.
Seema Sharma, Ph.D. (IIT Delhi)
Professor
Economics & Finance.

Kanika T. Bhal, Ph.D. (IIT Kanpur)
Professor
OB, HR, Business Ethics & Corporate Governance, Leadership and Culture.

Harish Chaudhary, Ph.D. (IIT Delhi)
Associate Professor
Marketing, HR and OB.

Neeru Chaudhry, Ph.D. (Monash Univ., Australia)
Assistant Professor
Finance and Accounting.

Sanjay Dhir, Ph.D. (Fellow, IIM Lucknow)
Associate Professor
Strategic Thinking, Strategic Innovations, Ambidexterity, Corporate Strategy, Alliances and Joint Ventures.

Amlendu Kumar Dubey, Ph.D. (IGIDR, Mumbai)
Associate Professor
Macro Economics, Development & Environmental Economics, Applied Econometrics.

Gourav Dwivedi, Ph.D. (Fellow, IIM Lucknow)
Assistant Professor
Operations Management, Game Theory, Operation Strategy, Project Management.

Agam Gupta, Ph.D. (FPM, IIM-C)
Assistant Professor
Sharing Economy, Platform Ecosystems, Organizational Ecology, Computational Social Science, and Networks.

M.P. Gupta, Ph.D. (IIT Delhi)
Professor, Dhananjaya Chair
Information System Policy & Strategy.

P. Vigneswara Ilavarasan, Ph.D. (IIT Kanpur)
Professor

Eri Ikeda, Ph.D. (Erasmus Univ., Rotterdam, Netherland)
Assistant Professor
Economics.
Sonali Jain, Ph.D. (Fellow, IIM-A)
Assistant Professor
Finance.

Arpan Kumar Kar, Ph.D. (Fellow, XLRI)
Associate Professor
Digital Economy, Digital Business, Data Science, ML/AI Application.

Smita Kashiramka, Ph.D. (BITS, Pilani)
Associate Professor
Finance & Banking, Merger and Acquisition.

Jitendra Madaan, Ph.D. (IIT Delhi)
Associate Professor
Supply Chain Management, Reverse Logistics, Sustainable Operations, Disaster Management.

Vivek G. Nair, Ph.D. (IIM Calcutta)
Assistant Professor
Organizational Behaviour/Human Resource Management.

Biswajita Parida, Ph.D. (FPM, IIM-A)
Assistant Professor
Consumer Behaviour, Advertising, Branding.

Prasanna Ramamoorthy, Ph.D. (Fellow, IIM-A)
Assistant Professor
Production and Quantitative Methods, Operations.

Mahim Sagar, Ph.D. (IITM, Gwalior)
Professor

Ravi Shankar, Ph.D. (IIT Delhi)
Amar S. Gupta Chair Professor of Decision Science

Surya Prakash Singh, Ph.D. (IIT, Kanpur PDF, NUS Singapore-MIT USA Alliance)
Professor

Shveta Singh, Ph.D. (Univ. of Allahabad)
Professor
Financial Management, Security Analysis & Portfolio Management, Corporate Governance & CSR.

Shuchi Sinha, Ph.D. (Univ. of London)
Assistant Professor
Leadership, Managing Change Workplace spirituality, Workplace Deviance, HR & OB.
Mayur Chikhale, Ph.D. (Stevens Institute of Technology, USA)
Full-Time Visiting Faculty

Sudhir K. Jain, Ph.D. (IIT Kanpur)
Ex. Professor, DMS, IIT Delhi & Former Vice Chancellor, Shri Mata Vaishno Devi University, Katra (J&K)
Adjunct Faculty
Managerial Economics, Entrepreneurship and IPRs.

Arup Roy Choudhury, Ph.D. (IIT Delhi)
Professor of Practice

Prof. Priyanka Vallabh, MDI Gurugram
Prof. Alka Gupta, New Multan Nagar, New Delhi

Prof. Manpreet Kaur, Bharti Vidyapeeth Institute of Management, Paschim Vihar

Prof. Himanshu Manglik, President – WALNUTCAP Consulting LLP, Delhi

Prof. Peter Trkman, University of Ljubljana, Faculty of Economics
Kardeljeva ploca 17, 1000 Ljubljana

Prof. Adrian, Associate Professor in Cultural Studies at the University of Queensland, Australia

Mr. Tarun Gupta - CTO, Chief Architecture, Technology Partner and Advisor

Dr. S. N Gosh, ACISI (UK), Chartered Institute for Security & Investment, U.K.

Dr. Nikhil Kumar Varma, Advisor QBRICS INC

Prof. G.V.R Shastry, SEP Stanford, SELP Harvard, Ph.D. (IIT Delhi)

Ms. Sapna Popli, Professor of Marketing - IMT Ghaziabad

Prof. Anshul Jain, Assistant Professor, Finance MDI Gurugram

Prof. Ashish Mohan, DGM JCB India

Mr. Vimal Kishore, Professional CA

Prof. Sunil Gupta, Consultant - Higher Education
INTRODUCTION

The Department currently runs three variants of MBA programme: a two-year full-time MBA programme, a two-year full-time MBA programme with focus electives on ‘Telecommunication Systems Management’ and a three-year Executive MBA programme with focus electives on ‘Technology Management’. Department offers functional electives in Economics, Finance, Marketing, Information Systems, Strategy, Operations Management, Human Resource etc. The students in two-year full time MBA programme are admitted through a rigorous screening process of CAT (Common Admissions Test)*, Written Aptitude Test (WAT) and Personal interview.

Department of Management Studies (DMS) has heavy research orientation as its forte, which is further used extensively for designing courses to respond to the current industry issues. The course content is very contemporary and has involved various stakeholders including industry experts, CEOs and our alumni. DMS faculty who have served on various UN related bodies and international professional associations are widely acclaimed internationally for their contributions in knowledge generation and research publications. Stanford has ranked DMS 2nd for its research output among IIMs and IITs. The faculty members work after nationally and internationally for consulting activities and research projects and have been widely acclaimed for their contributions. Till date in more than three decades of existence, over 200 Ph.Ds have been groomed by Department. The faculty has contributed at the highest policy level committees of Government of India (GoI), served on various boards of corporate entities, as Chairman ‘All India Board of Management Education’ of AICTE and contributed to the establishment of 5th Indian Institute of Management (IIM) at Kozhikode, and 7th Indian Institute of Management at Shillong. The Department faculty has published over 80 books and over 1200 papers in various ‘A’ category journals and conference volumes. DMS has a world class IT infrastructure with a very high faculty to student ratio. DMS has a rich software repository that facilitates computer aided instructions and enables hands on experience on leading business enterprises. The Global Field Study is a unique initiative which provides the students of DMS an international exposure through their visits to various other countries like Germany, Singapore, China (Beijing & Shanghai), Malaysia, Brussels, Netherland, Belgium, France, Australia and Japan.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers several courses to undergraduate students as electives, and also offers a Minor Area in Business Management and Entrepreneurship.

PEDAGOGY

The Department places heavy emphasis on experiential and process-oriented learning. The pedagogical tools include extensive use of Harvard case studies (HBS), simulation exercises, industry-oriented project work, eight weeks of summer projects, 3 weeks of Social Sector attachment and the like, to facilitate the same. The
process – oriented learning is further enhanced by Global Field Study (GFS) which students undertake for their projects. Besides honing up the skills of individual decision-making, enough emphasis is laid on developing team skills and value focused decision making. Extensive research and consultancy that have gained wide peer level recognition back the teaching.

Masters of Business Administration

With the unique features of systems orientation and a blend of creativity and analytical problem-solving skills, MBA Full Time is aimed to develop holistic managers who internalize a synthesis of conventional and modern management – thinking and who can comfortably adapt to changing business requirements. The program provides the students with various routes to the industry, matching its requirements with their skills and predispositions. Every student gets the opportunity to take courses in major-streams: Information Systems, Finance, Marketing, Strategic Management and Operations Management. Along with the functional electives, the students also get a cross functional perspective.

Masters of Business Administration (Telecommunication Systems Management)

The MBA Full Time Program with focus in Telecommunication Systems Management is a hallmark of technomanagerial excellence imparted to the scholars at DMS. This programme is comprehensive in nature, involving all the business functions – Information Systems, Finance, Marketing, Strategic Management, Human Resources Management, with an emphasis on Telecommunications Systems Management, which provides a strong foundation in Telecom Technology, Business and Regulation. This programme draws Telecom technology inputs from Bharti School of Telecom Technology and Management of IIT Delhi. The inclusive nature of the program fosters creation of effective managers across different domains, equipping them with holistic skills and a strategic advantage when it comes to leading business in the Telecom sector.

Masters in Business Administration (for Working Executives)

For the Indian industry to gain global competitiveness, effective management of technology is crucial. This would mean using technology as a strategic variable to gain competitive advantage and would require an organization to critically understand processes of technology planning and strategy, management of technology transfer and absorption, management of innovation and R&D and more. The Executive MBA programme with focus electives on ‘Technology Management’ is aimed at fulfilling these requirements so as to enable the managers to effectively contributes in evolving core competencies in Indian industry. This programme is designed to impart management education to working executives.

RESEARCH AREAS

The Department of Management Studies has a full-fledged Ph.D. programme in Management. With its liberal multidisciplinary approach, the department provides excellent ambience for research amidst the world class
infrastructure at IIT Delhi. In a Stanford study 2015, on Indian Universities doing research in social science, the Department of Management Studies, IIT Delhi has been ranked second in the Business and Management category. Surpassed only by IIM Bangalore, DMS is ahead of all other IIMs, IITs and ISB. In the QS Rank 2019 and NIRF Research ranking 2020, DMS, IIT D is ranked among top 3 Management Research Institute in India.

The research areas are broadly classified into the following areas:

- Economics
- Finance and Accounting
- Operations and Supply Chain Management
- Information Technology and Systems
- Strategy and Technology Management
- Marketing
- HR-OB

The full-time doctoral students will receive a financial aid as below. The students are required to do academic duty for 8 hours per week (excluding their research work) as a Teaching Assistant (TA). TAs will be assisting the faculties in developing the course content, taking tutorial and grading. Fellowship is extended for the fifth year, only on the basis and review of the work. Students will be provided financial support for attending national and international conferences as per the institute norms.

<table>
<thead>
<tr>
<th>Period of Assistantship (With B.E./B.Tech./M.Sc./M.Tech. or Equivalent Qualification)</th>
<th>Assistantship Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 2 year of registration</td>
<td>₹ 31,000/- Month</td>
</tr>
<tr>
<td>Next 3 year of registration</td>
<td>₹ 35,000/- Month</td>
</tr>
</tbody>
</table>

LABORATORY FACILITIES

The Department of Management Studies has seven fully air conditioned Wi-Fi enabled lecture theatres equipped with LCD projectors to ensure the best possible environment for learning. The auditorium has a seating capacity of over 120 and hosts numerous guest lectures, seminars and other programs. There is also an exclusive library in addition to the central library of the institute. The following laboratories facilitate learning and research:
• Research Lab
• Operations Lab
• Behavioral Lab
• Strategy and Competitiveness Lab
• Centre of Excellence in Entrepreneurship
• Centre of Excellence “National Centre of Business Ethics, Corporate Governance and Corporate Social Responsibility”
• Information System and Data Science Lab

A large collection of software packages and data-bases such as SPSS, e-Views, Ace Equity, Bloomberg, AMOS, Vensim, I-Think, LISRD, VIVO, STATA, Hummingbird Knowledge Management Suite, Prowess, LINGO, and ARENA etc. are available in the laboratories. Further, the Behavioral Laboratory has in-house camera, TV and specialized software to help the students hone their behavioral skills.
DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING
Josemon Jacob, Ph.D. (Iowa State Univ.)
Professor
Polymer Synthesis, Semiconducting Polymers, Polymer Based LEDs and Photovoltaics, Block Copolymers Biodegradable Polymers, Polymerization Catalysis.

Shib Shankar Banerjee, Ph.D. (IIT Patna)
Assistant Professor

Ayan Bhowmik, Ph.D. (Uni. of Cambridge)
Assistant Professor

Ankur Goswami, Ph.D. (IISc., Bangalore)
Assistant Professor

Nitya Nand Gosvami, Ph.D. (NUS, Singapore)
Assistant Professor

Krishna Balasubramanian, Ph.D. (IISc. Bangalore)
Assistant Professor

A.K. Ghosh, Ph.D. (Sunny Buffalo)
Professor
Rheology and Processing, Polymer Reaction Engineering, Polymer Blends and Alloys, Mixing and Compounding, Computer Aided Modelling, Polymeric Nano-composites, Polymer Film Processing, Cellular and Biopolymers.

Jayant Jain, Ph.D. (British Columbia)
Associate Professor

Divya Nayar, Ph.D. (IIT Delhi)
Assistant Professor
Computational Materials Chemistry, Molecular Simulations of Soft Matter (Polymers, Biomolecules), Macromolecular Solvation Thermodynamics, Self-Assembly in Nanomaterials.

Suresh Neelakantan, Ph.D. (TU Delft)
Assistant Professor

Leena Nebhani, Ph.D. (Karlsruhe Institute of Technology)
Associate Professor
New Synthetic Routes for Polymer and Surface Functionalization Based on RAFT Polymerization and Click Chemistry, Antimicrobial Hydrogels and Cryogels for Water Disinfection, Synthesis and Polymer Functionalization of Organically Modified Silica.
Rajesh Prasad, Ph.D. (University of Cambridge)
Professor

Nirat Ray, Ph.D. (MIT)
Assistant Professor

Lakshmi Narayan Ramasubramanian, Ph.D. (IISc., Bangalore)
Assistant Professor

Sampa Saha, Ph.D. (Michigan State Univ.)
Associate Professor

Sangeeta Santra, Ph.D. (IISc., Bangalore)
Assistant Professor

Bhabani K. Satapathy, Ph.D. (IIT Delhi)
Professor
Morphology and Phase Behaviour of Block Copolymers, Polymer Blends and Composites, Micromechanics, Fracture and Fatigue of Polymer Nano-composites, Tribology of Polymer Based Materials, Biotribology, Thermo-Mechanical Behaviour of Biomaterials.

Bijay P. Tripathi, Ph.D. (CSMCRI, Bhavnagar)
Assistant Professor

Rajesh Prasad, Ph.D. (University of Cambridge)
Professor

Lakshmi Narayan Ramasubramanian, Ph.D. (IISc., Bangalore)
Assistant Professor

Sampa Saha, Ph.D. (Michigan State Univ.)
Associate Professor

Sangeeta Santra, Ph.D. (IISc., Bangalore)
Assistant Professor

Bhabani K. Satapathy, Ph.D. (IIT Delhi)
Professor
Morphology and Phase Behaviour of Block Copolymers, Polymer Blends and Composites, Micromechanics, Fracture and Fatigue of Polymer Nano-composites, Tribology of Polymer Based Materials, Biotribology, Thermo-Mechanical Behaviour of Biomaterials.

Bijay P. Tripathi, Ph.D. (CSMCRI, Bhavnagar)
Assistant Professor

Rajesh Prasad, Ph.D. (University of Cambridge)
Professor

Lakshmi Narayan Ramasubramanian, Ph.D. (IISc., Bangalore)
Assistant Professor

Sampa Saha, Ph.D. (Michigan State Univ.)
Associate Professor

Sangeeta Santra, Ph.D. (IISc., Bangalore)
Assistant Professor
INTRODUCTION

The Department of Materials Science and Engineering (DMSE) has been established on 1st January 2018 for developing and undertaking research on materials for specific end uses. It holds the privilege of being the only materials research and engineering department in Delhi-NCR region. The principal thrust of the department is manpower development and research for enhancing the fundamental knowledge as well as developing new materials. The department emphasizes interaction with the related industry. The changing needs of the industry are kept in view while designing and upgrading teaching and research programmes.

Mission

To provide frontier education in Materials Science and Engineering at the postgraduate level to:
• Achieve excellence in education and research to meet the growing needs of the society.
• Expose the students broadly to research intensive curriculum for skill enhancement to suit the global market.
• Provide an environment conducive to innovation, creativity, implementation of new ideas and team spirit so as to foster young and fresh talents.
• Promote high standards of professional ethics.

ACADEMIC PROGRAMMES

The Department currently has two M.Tech. programmes, one in Polymer Science and Technology and a second one in Materials Engineering with a combined intake of ~35 students. A small number of seats under these programmes are also allocated for M.S.(R) programme. The admission to these programmes is through the GATE exam held every year. Also, the first batch of students for B.Tech. in Materials Engineering with an intake of 40 students started in 2020 for which the admission is through JEE. We also have a Ph.D. programme with close to 100 research students currently working on various aspect of Material Science and Engineering.

RESEARCH AREAS

High Performance Materials:
• **Metals, glass and ceramics:** Structure-property correlation in advanced materials, Fracture and Fatigue, Indentation, nano-scale friction and wear, Material characterization using advanced microscopy, phase transformations, solid-state diffusion controlled reactions, Synthesis and characterization of Metal matrix composites, Light metals and alloys, 3D printed metals and alloys, Auxetic materials, Bulk metallic glasses and composites, functionally graded materials, nanomaterials. Advanced ceramics, high entropy alloys, materials for extreme environments, thermal barrier coatings, alloy processing and properties, refractory metals and compounds, aluminide bond coats. Optical glass, toughened and tempered glass, structural and functional ceramics and glass ceramics.
• **Polymers**: Synthesis of polymers, structure-property correlation in polymers, rheology and processing of polymers, functional and smart elastomeric materials, polymer matrix composites, tribology and mechanical behaviour of polymers, 3D printing of functional elastomeric/polymeric materials, membranes for various applications, antifouling and antibiofouling materials and membranes, redox polymers, materials for energy storage, separation and purification, organic-inorganic hybrid materials, catalytic materials and nanomaterials for catalysis and environmental applications, 2D materials, graphene, Covalent organic frameworks, biodegradable materials and biomaterials, organically modified mesoporous silica nanoparticles, surface engineering using controlled radical polymerization techniques, recycling of materials, 3D printing.

• **Computational Materials Science**: First-principles based materials design, micromagnetic simulations, computational materials chemistry, molecular modelling and simulations of soft materials (self-assemblies, (bio)polymers, nanomaterials), machine learning for materials informatics.

• **Functional Materials**: Semiconductor nanostructures and device applications, magnetic nanowires and magnetic tunnel junctions for spintronics device applications, MEMS/NEMS devices, solar cell, organic.

LABORATORY FACILITIES

• **Material Chemistry Lab**: Freeze Dryer, Specialised Polymerization set-ups, Distillation apparatus including Vacuum Distillation, Rotary Vacuum Evaporator, Constant Temperature Baths, Deionized & Distilled Water Apparatus, Hot Air Ovens, Vacuum Ovens, High Precision Balances, High Speed Stirrer, Glove Box, Spin Coater.

• **Material Characterization Laboratory**: Differential Scanning Calorimeter (DSC), Thermo-gravimetric/Analyser (TGA), Gel Permeation Chromatography (GPC), FTIR Spectrometer, Nanoparticle Analyzer, Dynamic Mechanical Analyzer, UV-Visible Spectrometer, Fluorescence Spectrometer, Zeta Sizer, High-performance liquid chromatography, Atomic Force Microscopes, Scanning Electron Microscope with EDS, Optical microscopes with heating and cooling stage, Optical emission spectroscopy, Dynamic Contact angle measurement system, Four Probe Electrical Conductivity Apparatus, Vector Network Analyzer, WVTR, OTR, Fluorescence Microscopes, FE-SEM.

• **Transmission Electron Microscope (TEM) Maximum point resolution - 0.4 nm:** Maximum magnification - 12 lacs, Facilitated with EDX.

S. Dharmaraja, Ph.D. (IIT Madras)
Professor

Biplab Basak, Ph.D. (IISc., Bangalore)
Assistant Professor
Algebraic Topology, Combinatorial Topology and Discrete Mathematics.

N. Chatterjee, Ph.D. (Univ. of London)
Professor
Natural Language Processing, Statistical Modeling, Semantic Web.

Aparajita Dasgupta, Ph.D. (York University, Toronto, Canada)
Assistant Professor
Harmonic Analysis, Pseudo-differential Operators.

Minati De, Ph.D. (IISc., Kolkata)
Assistant Professor
Data Structures & Algorithm, Approximation Algorithms, Combinatorial and Computational Geometry.

Debdip Ganguly, Ph.D. (TIFR-CAM)
Assistant Professor
Partial Differential Equations, Geometric Analysis.

Subiman Kundu, Ph.D. (Virginia Tech. Univ.)
Professor
Topology, Measure Theory.

Surjeet Kour, Ph.D. (IIT Kanpur)
Assistant Professor
Commutative Algebra, Group Theory.

Harish Kumar, Ph.D. (ETH Zurich)
Associate Professor
Computational Methods for Partial Differential Equations.

N. Shravan Kumar, Ph.D. (Madras Univ.)
Associate Professor
Abstract Harmonic Analysis.

V.V.K. Srinivas Kumar, Ph.D. (IIT Kanpur)
Assistant Professor
Computational Partial Differential Equations.
Anant Kumar Majee, Ph.D. (TIFR-CAM)
Assistant Professor

Aparna Mehra, Ph.D. (Delhi Univ.)
Professor

Mani Mehra, Ph.D. (IIT Kanpur)
Associate Professor
Numerical Method, Wavelets Method for PDEs.

Vivek Mukundan, Ph.D. (Purdue University)
Assistant Professor
Commutative Algebra, Algebraic Geometry.

Anima Nagar, Ph.D. (Gujrat Univ.)
Associate Professor
Topological Dynamics.

B.S. Panda, Ph.D. (IIT Kanpur)
Professor
Algorithmic Graph Theory, Graph Theory, Algorithms, Parallel and Distributed Computing.

Shiv Prakash Patel, Ph.D. (TIFR Mumbai)
Assistant Professor
Representation Theory, Automorphic forms, Number Theory.

Kamana Porwal, Ph.D. (IISc. Bangalore)
Assistant Professor
Finite Element Methods for PDEs and Optimal Control Problems.

Amit Priyadarshi, Ph.D. (Rutgers University)
Assistant Professor
Fractal Dimensions, Positive Operators.

Ashutosh Rai, Ph.D. (The Institute of Mathematical Sciences, Chennai)
Assistant Professor
Theoretical Computer Science, Parameterized Complexity, Graph Algorithms.

S.C. Sekhara Rao, Ph.D. (IIT, Kanpur)
Professor
Parallel Computing, Numerical Analysis.

Ekata Saha, Ph.D. (The Institute of Mathematical Sciences, Chennai)
Assistant Professor
Number Theory.
R.K. Sharma, Ph.D. (IIT Delhi)
Professor
Algebra, Cryptography.

Vikas Vikram Singh, Ph.D. (IIT Bombay)
Assistant Professor
Stochastic Games, Chance Constraints, Stochastic Optimization.

A. Tripathi, Ph.D. (Univ. at SUNY, Buffalo)
Professor
Number Theory, Combinatorics and Graph Theory.

Viswanathan Puthan Veedu, Ph.D. (IIT Madras)
Assistant Professor
Approximation Theory, Fractal Functions.

Biswajyoti Saha, Ph.D. (The Institute of Mathematical Sciences, Chennai)
Assistant Professor
Number Theory.

K. Sreenadh, Ph.D. (IIT Kanpur)
Professor
Differential Equations and Analysis.

Sivananthan Sampath, Ph.D. (IIT Madras)
Associate Professor

Ritumoni Sarma, Ph.D. (TIFR, Bombay)
Associate Professor
Algebraic Groups.

Punit Sharma, Ph.D. (IIT Guwahati)
Assistant Professor
Numerical Linear Algebra, Nearness Problems in Control Theory.
INTRODUCTION

The Department offers courses at both undergraduate and postgraduate levels. It runs a five year dual degree programme (B.Tech. + M.Tech.) in Mathematics and Computing, a four year B.Tech. programme in Mathematics and Computing, and a two year M.Sc. programme in Mathematics. The Department also has an active Ph.D. programme.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers a five year dual degree programme (B.Tech. + M.Tech.) in Mathematics and Computing and a four year B.Tech. programme in Mathematics and Computing at undergraduate level. The dual degree programmes have replaced former five year integrating M.Tech. in Mathematics and Computing programme from 2013 onward. The aim of these programmes is to build a broad based theoretical background of Mathematical Sciences and practical training in Computing, Numerical Methods, and Mathematical and Statistical Modeling. Graduate of these programmes will be ready for a career in research and development in software industries, financial institutes and for a research-based career.

POSTGRADUATE

The Department offers a two-year post B.Sc. course leading to the degree of Master of Science in Mathematics. The main feature of this programme is that during the first year it makes the student familiar with basic theory in all the streams of Mathematics-Pure Mathematics, Applied Mathematics, Statistics, Operations Research, Computer Science. And in the second year, the student has an option of choosing modern advanced courses in some specialized area(s).

RESEARCH AREAS

Doctoral research is being carried out in all major areas of Mathematics, Applied Mathematics, Statistics and Operation Research and Theoretical Computer Science and its application.

LABORATORY FACILITIES

The Department has three well-equipped Computing Laboratories with PCs and supporting software. These Laboratories are available to students for training and implementation of their computer programmes on assignments during courses or project work.
Krishnakant Agrawal, Ph.D. (IISc., Bangalore)
Assistant Professor

S. Aravindan, Ph.D. (IIT Madras)
Professor
Ceramics, Composites, Welding, Nano-Manufacturing.

Supreet Singh Bahga, Ph.D. (Stanord Univ.)
Associate Professor
Microfluidics and Nanofluidics, Electrohydrodynamics, Heat Transfer.

Naresh Bhatnagar, Ph.D. (IIT Bombay)
Professor
FRP Composite Materials, Processing and Manufacturing, Injection Molding, Biomaterials.

Nomesh B. Bolia, Ph.D. (Univ. of North Carolina)
Professor

Anoop Chawla, Ph.D. (IIT Kanpur)
Professor, (Henry Ford Chair)
CAD, CAE, Dynamics, Bio-mechanics, Road Safety, Impact and Blast Mechanism.

Ashish K. Darpe, Ph.D. (IIT Delhi)
Professor
Machinery Health Monitoring, Rotor Dynamics, Vibration and Noise Engineering.

Debabrata Dasgupta, Ph.D. (IIT Kharagpur)
Assistant Professor
Microfluidics and Microscale Transport Processes, Computational Fluid Dynamics, Multiphase Transport.

S.G. Deshmukh, Ph.D. (IIT Bombay)
Professor
Supply Chain Management, Quality Management, Information Systems.

Naresh V. Datla, Ph.D. (University of Toronto)
Associate Professor
Fracture and Fatigue, Composites, Biomechanics.

Subhra Datta, Ph.D. (Northwestern Univ.)
Associate Professor
Micro-scale Fluid Mechanics, Lectrokinetics, Microfluidics.

Devendra K. Dubey, Ph.D. (Purdue University)
Associate Professor
Computational Materials Science, Molecular Modeling, Nanomechanics, Biomaterials and Biomechanics, Finite Element Modeling.
J.K. Dutt, Ph.D. (IIT Delhi)
Professor
Rotor Dynamics, Vibration and Control.

Arnob Ghosh, Ph.D. (University of Pennsylvania)
Assistant Professor

Sudarsan Ghosh, Ph.D. (IIT Kharagpur)
Professor
Grinding of Ceramics and Superalloys, Machining of Titanium Alloys, Surface Engineering.

Amit Gupta, Ph.D. (Univ. of Central Florida)
Professor
Energy Storage, Flapping Wing Aerodynamics, Microfluidics.

Harish Hirani, Ph.D. (IIT Delhi)
Professor
Bearings (Hydrodynamic, Rolling Element, and Magnetic), Synthesis and Application of Smart (Magnetorheological Fluids).

Sanjeev Jain, Ph.D. (IIT Delhi)
Professor

Sunil Jha, Ph.D. (IIT Kanpur)
Professor
Advanced Machining and Finishing Processes, Micro and Nanofinishing, Mechatronics, Robotics.

S.R. Kale, Ph.D. (Stanford Univ.)
Professor

Jitendra P. Khaitait, Ph.D. (University of Twente)
Associate Professor
Precision Machine Design, Flexures, Medical Devices, Robotics.

Sangeeta Kohli, Ph.D. (IISc., Bangalore)
Professor
Heat Transfer, Fluid Mechanics, Renewable Energy Technology.

Rama Krishna K., Ph.D. (IISc., Bangalore)
Assistant Professor

D. Ravi Kumar, Ph.D. (IIT Madras)
Professor
Metal Forming, Mechanical Metallurgy.

Mayank Kumar, Ph.D. (Massachusetts Institute of Technology USA)
Assistant Professor

Kusum Meena, Ph.D. (Auckland University of Technology New Zealand)
Assistant Professor
Additive Manufacturing, Auxetic Metamaterials, Laser Material Processing.
Kaushik Mukherjee, Ph.D. (IIT Kharagpur)
Assistant Professor

S.V. Modak, Ph.D. (IIT Delhi)
Professor

Sudipto Mukherjee, Ph.D. (Ohio State Univ.)
Professor (Volvo Chair)

Prithviraj Mukhopadhyay, Ph.D. (IIT Madras)
Assistant Professor
Machining of Ceramics, Cutting Tool Development, Joining, Surface Coating and, Vacuum Tech.

Pulak Mohan Pandey, Ph.D. (IIT Kanpur)
Professor
Rapid Prototyping, Unconventional Machining, Finite Elements, CAD/CAM.

R.K. Pandey, Ph.D. (Banaras Hindu Univ.)
Professor
Bearing Lubrication, Tribological Elements Design, Engine Tribology, Lubrication in Metal Forming.

B. Premachandran, Ph.D. (IIT Madras)
Professor
Heat Transfer, Computational Fluid Dynamics.

Varun Ramamohan, Ph.D. (Purdue University)
Assistant Professor
Probabilistic Modeling, Simulation and Optimization, with Applications in Healthcare Systems Engineering.

P. Venkateswara Rao, Ph.D. (IIT Madras)
Professor
Machining of difficult to machine materials, Grinding of Ceramics, Micro/Nano Manufacturing, Sustainable Machining.

Bahni Ray, Ph.D. (IIT Kanpur)
Assistant Professor

Anjan Ray, Ph.D. (Michigan State Univ.)
Professor
Combustion, Heat Transfer.

Subir K. Saha, Ph.D. (McGill Univ.)
Professor
Multibody Dynamics, Robotics, Design, Mechatronics.

Shaurya Shriyam, Ph.D. (Univ. of Southern California)
Assistant Professor
Data-Driven Optimization for Problems in Automation, Logistics and Healthcare; Complex Resource Distribution Networks; Multi-agent Planning and Reinforcement Learning.

Satinder Paul Singh, Ph.D. (IIT Delhi)
Professor
Sujeet Kumar Sinha, Ph.D. (Imperial College London)
Professor
Nano-tribology, Bio-tribology, Polymer Tribology, Materials in Mechanical Design.

P.M.V. Subbarao, Ph.D. (IIT Kanpur)
Professor

Prabal Talukdar, Ph.D. (IIT Guwahati)
Professor

Bhupinder Godara, M.Tech. (IIT Delhi)
Professor of Practice
Refrigeration and Air-conditioning Product Design With a Focus on Sustainable, Environment Friendly and Affordable Technologies for India.

Kshitij Gupta, Ph.D. (IIT Delhi)
Emeritus Professor

Prem Vrat, Ph.D. (IIT Delhi)
Honorary Professor

Kiran Seth, Ph.D. (Columbia Univ.)
Honorary Professor
Padma Shri

A.D. Gupta, M.Tech. (IIT Delhi)
Guest Faculty
Industrial Engineering, Operation Research, Value Engineering, Industrial Quality Control.

T.K. Kundra, Ph.D. (IIT Delhi)
Guest Faculty

Suresh Anand, Ph.D. (IIT Delhi)
Adjunct Faculty

P. V. Madhusudhan Rao, Ph.D. (IIT Kanpur)
Joint Faculty

Priya Vashisth, Ph.D. (IIT Roorkee)
DST-Inspire Faculty
Smart Functional Biomaterials (Drug Delivery and Biomedical Implants), Tissue Engineering.
INTRODUCTION

The faculty of the Department of Mechanical Engineering are engaged in research encompassing a wide variety of areas. Research of an inter-disciplinary nature is being performed in collaboration with faculty of other departments and centres of the institute, and with select faculty from other institutions in India and abroad. The research is largely supported by sponsored projects and consultancies. These research areas form a major portion of the topics of doctoral dissertations and Masters’ theses. The research and teaching broadly covers topics in design, industrial, production and thermal engineering. A wide variety of courses in the above areas are offered by the department at all levels.

The research and teaching activities are supported by 12 skilled staff who manage 27 laboratories. Many of the laboratories are equipped with state-of-the-art facilities. The department is also host to faculty on sabbatical from Indian and foreign institutions, INSPIRE Faculty Fellows, and postgraduate and undergraduate students from several institutions/universities in India and abroad. Several faculty members serve as experts on national and international technical committees.

ACADEMIC PROGRAMMES

The Department faculty offer courses at various levels catering to various degree programmes.

The Department offers two Undergraduate Programmes leading to the Bachelor of Technology degree with specializations in (i) Mechanical Engineering, and (ii) Production and Industrial Engineering.

The Department offers four Postgraduate Programmes leading to respective Master of Technology degrees with a specialization in Mechanical Design, Industrial Engineering, Production Engineering, and Thermal Engineering. Also, Master of Science (Research) programmes is offered in theses specializations. The faculty also participate in interdisciplinary Master of Technology programmes in Construction Technology and Management, Computer Applications, Polymer Science and Technology, Industrial Tribology & Maintenance Engineering, Energy Studies, and Transportation Engineering. The faculty also participates in the Master of Design programme and activities of the Khosla School of Information Technology. Recently, several faculty members have been engaged in improving rural technologies for enhanced livelihood.

- **Mechanical Design:** Mechanical vibrations, Rotor dynamics, Damped structures, Composite structures, Smart structures, Active vibration control, Experimental modal analysis and identification, Structural dynamic modification, Finite element model updating, Dynamic design, Noise engineering, Condition monitoring, Bearing dynamics, Lubrication, Bio-tribology, Tribological Coatings, Mechanical system design, Computer aided mechanical design, Computer controlled mechanisms, Vehicle dynamics, Modeling the impact of vehicles, Impact biomechanics, Concurrent engineering design, Mechanisms, Robotics, Multi-body dynamics,
Application of multi-body dynamics in design, Analysis of rural engineering systems, Mechatronics, Sensors and actuator design, MEMS, Design of micro-systems, Nano-mechanics, Artificial intelligence applications in mechanical engineering, Expert systems for design and manufacturing, Mechanical engineering applications to medical science.

- **Industrial Engineering**: Operations research, Applied probability, Stochastic modeling and simulation, Project management, Supply chain management, Computer integrated manufacturing systems, Facilities planning, Value engineering, Flexible systems, ERP, Intelligent manufacturing systems, e-business, Quality and reliability engineering, Maintenance management, Manufacturing system design and analysis, Service system design, Production planning and control. OR applications to healthcare, manufacturing, telecommunications, transportation, policy, governance, finance, etc.

- **Interdisciplinary Research**: Transportation research and injury prevention program, Energy, quality and productivity audit of rural industries, Medical implants, Autonomous robotics, Development of composite materials, Atmospheric convection, Rural Technology Action Group (Rn TAG).

LABORATORY FACILITIES

The Department has 27 well-equipped laboratories which cater to the needs of research and teaching activities. The Production Engineering, welding, Metrology, Machine Tools & CNC laboratories encompass the different machinery required for manufacturing and inspection. A state-of-the-art Micro-manufacturing laboratory houses sophisticated
machines for micro- and nano-manufacturing. Laboratories that cater to the activities in the area of mechanical design include: Mechatronics, Vibration and Instrumentation, Vibration Research, Mechanism and Simulation, Bio-tribology, Tribological coatings and Design Research laboratories. A Computer-Aided Graphics instruction Laboratory, equipped with computers, and drawing and design software packages is used for imparting training in mechanical design. Microfluidics, Combustion Refrigeration and Air-conditioning, Internal Combustion Engines, turbo-machinery, Heat Transfer Laboratories serve the needs of research and teaching in thermal engineering. Industrial Engineering Lab houses teaching and research activities in the areas of Operations Research, Health care OR and Health Systems, Public Policy and Governance, Transportation, Clean Air and Manufacturing Analytics.
R. Chatterjee, Ph.D. (IIT Kanpur)
Professor

Aditya Narain Agnihotri, Ph.D. (TIFR, Mumbai)
Assistant Professor
Ion-atom Collision Physics, Ion-irradiation of Biologically Relevant Molecules.

Sujin B. Babu, Ph.D. (Univ. du Maine, France)
Associate Professor
Aggregation of Colloids, Porous Media, Low Reynolds Number Swimmers.

Bodhaditya Santra, Ph.D. (Univ. of Groningen, Netherland)
Assistant Professor
Cold Atom Quantum Technology.

Varsha Banerjee, Ph.D. (IISc., Bangalore)
Professor

Saswata Bhattacharya, Ph.D. (IACS, Kolkata)
Associate Professor

Sujeet Chaudhary, Ph.D. (IIT Delhi)
Professor

Amita Das, Ph.D. (IIT, Kanpur)
Professor
Plasma Physics, Laser Plasma Interaction, Particle and Fluid Simulation in Plasma.

Pintu Das, Ph.D. (Uni. of Saarland, Germany)
Assistant Professor
Experimental Condensed Matter Physics: Magnetism at Nanometer Scale, Charge Carrier-dynamics (Low-frequency) as well as Atomic/Nanometer Scale Electronic Phenomena in Correlated Electron Systems, Instrumentation.

Rajendra S. Dhaka, Ph.D. (UGC-DAE CSR, Indore)
Associate Professor

Joyee Ghosh, Ph.D. (Jawaharlal Nehru Univ.)
Assistant Professor
Quantum and Nonlinear Optics, Quantum Information Technologies, Atomic, Molecular and Optical Physics.
Pradipta Ghosh, Ph.D. (IACS Kolkata)
Assistant Professor
Phenomenological Analyses of Physics Beyond the Standard Model in the Areas of Neutrino Physics, Higgs Physics, Leptonic Flavor Violation, Dark Matter and Collider Studies.

Santanu Ghosh, Ph.D. (Jawaharlal Nehru Univ.)
Professor
Experimental Condensed Matter Physics, Thin Film, Ion Materials Interaction.

Sankalpa Ghosh, Ph.D. (Jawaharlal Nehru Univ.)
Professor
Bose Einstein Condensate of Cold Atoms, Quantum Hall Effect, Graphene, Topological Insulator.

Abhishek Muralidhar Iyer, Ph.D. (IISc., Bangalore)
Professor
Different Aspects of Particle Physics Phenomenology: Investigation of Strong Dynamics in the Context of Both QCD and QCD like Theories. Flavour Physics of B and K Mesons and Investigating their Reach in the Current and Future Experiments (eg. LHCb, BELLE-2, NA62 etc). New Data-Driven Techniques for Current (eg. LHC) and Future Colliders (eg. FCC-hh, FCCee etc).

Bhaskar Kanseri, Ph.D. (University of Delhi)
Assistant Professor
Quantum Optics, Ultrafast and Non-linear Optics, Optical Coherence and Interferometry, Polarization and Spectral Switching.

Neeraj Khare, Ph.D. (BHU)
Professor

Sunil Kumar, Ph.D. (IISc., Bangalore)
Associate Professor
Altrafast Optics and Spectroscopy, Plasmonics, Electron Correlated Solids.

Deepak Kumar, Ph.D. (TIFR, Mumbai)
Assistant Professor

Brajesh Kumar Mani, Ph.D. (PRL, Ahmedabad)
Assistant Professor
Computational Condensed Matter Physics, Computational Many-Body Physics, Molecular Dynamics and Monte Carlo Simulations.

Kaustuv Manna, Ph.D. (IISc., Bangalore)
Assistant Professor
Experimental Investigation of Various Topological Phase of Matter, Specialization on Single Crystal Growth, Magnetization, High Magnetic Field Electrical and Thermal Transport Measurements.

Hitendra K. Malik, Ph.D. (IIT Delhi)
Professor

Rahul Suresh Marathe, Ph.D. (RRI Bangalore)
Assistant Professor
Non-euilibrium Statistical Mechanics, Biophysics Theory, Modelling, Simulations.
Sujit Manna, Ph.D. (IACS, Kolkatta)
Assistant Professor
Experimental Condensed Matter Physics, Quantum Materials, Unconventional Super-conductivity, MBE, Spectroscopic Imaging (STM/STS).

Amruta Mishra, Ph.D. (Utkal Univ.)
Professor
Superconductivity in Quark Matter and Ultra-cold Atoms, In-medium Hadron Properties and Observable in High Energy Accelerator Experiments.

Pranaba Kishor Muduli, Ph.D. (Humboldt Univ. & PDI, Berlin)
Associate Professor
Spin Torque Induced Magnetization Dynamics, Spintronics and Nanomagnetism.

Rohit Narula, Ph.D. (MIT, USA)
Assistant Professor
Condensed Matter Theory, Raman Spectroscopy.

G. Vijay Prakash, Ph.D. (Andhra Univ.)
Professor

V. Ravishankar, Ph.D. (Lehigh Univ.)
Professor
Semiconductor Physics, Devices and Technology, Organic Semiconductors, Nano-technology.

Vikrant Saxena, Ph.D. (IPR Gandhinagar)
Assistant Professor
Computational Plasma Physics, Laser-plasma Interactions, Nonlinear Waves and Solitons in Plasmas, XFEL Irradiation of Rare Gas Clusters, Plasma based Particle Acceleration etc.

Amartya Sengupta, Ph.D. (Rutgers Univ. & NJIT)
Assistant Professor
Experimental Ultrafast Optics, THz Spectroscopy, Optical Spectroscopy at High P-T, Mineral Physics.

Tarun Sharma, Ph.D. (Tata Institute of Fundamental Research, Mumbai)
Assistant Professor
String theory, Quantum Field Theories, Supersymmetry, Higher Spin Symmetry, AdS-CFT, Fluid-Gravity Correspondence.

M.R. Shenoy, Ph.D. (IIT Delhi)
Professor
Optoelectronics, Fibre and Integrated Optics, Optical Fiber Components, Nonlinear Guided Wave Optics.

A.K. Shukla, Ph.D. (IIT Delhi)
Professor

J.P. Singh, Ph.D. (Jawaharlal Nehru Univ.)
Professor
Prospectus 2021-22

Physics

Suprit Singh, Ph.D. (IUCAA Pune)
Assistant Professor
Matter-gravity interaction in Cosmology, Black Holes, Analogue Spacetimes and Quantum Gravity, and the Emergence of Classicality. Once Classical, we are involved in Observational Cosmology including Astrophysical Magnetic Fields on Galactic and Extragalactic Scales.

Aloka Sinha, Ph.D. (IIT Madras)
Professor
Nonlinear Optics, Liquid Crystals, Optical Information Processing, Biometrics.

Pankaj Srivastava, Ph.D. (Rajasthan Univ.)
Professor
Experimental Solid State Physics, Electronic Structure of Materials, Surface-interface Physics.

Rajendra Singh, Ph.D. (Jawaharlal Nehru Univ.)
Professor

Manisha Thakurathi, Ph.D. (IISc., Bangalore)
Assistant Professor

Folke Tobias Florus Toll, Ph.D. (Hamburg Univ., Germany)
Assistant Professor
High Energy Physics.

R.K. Varshney, Ph.D. (IIT Delhi)
Professor
Fibre and Integrated Optics, Nonlinear Optics, Fiber Optic Sensors, Fiber Lasers.

Vivek Venkataraman, Ph.D. (Cornell Univ.)
Assistant Professor (Joint Faculty Phy/EE)

G.B. Reddy, Ph.D. (IIT Delhi)
Emeritus Professor
Thin Film Technology, Smart Windows, Nano-Structured Films.

B.R. Mehta, Ph.D. (IITD)(Schlumberger Chair)
Emeritus Professor
Thin Film and Nanostructured Materials, Inorganic-Organic Hybrid Interfaces, Resistive Memory, Thermoelectric, Photo Electro Chemical and Solar Cell Devices.

Yoshiro Azuma, Ph.D. (Univ. of Oregon, USA)
Visiting Professor (Japan)
Atomic and Molecular Physics, Particularly many-Electron Effects Probed by Synchrotron Radiation.
INTRODUCTION

The Department is engaged in advanced research in several areas of physics and offers a variety of courses for undergraduate and postgraduate students. The Department offers a B.Tech. programme in Engineering Physics, M.Sc. programme in Physics, and M.Tech. programmes in (i) Solid State Materials, (ii) Applied Optics, and (iii) Opto-electronics and Optical Communications (an interdisciplinary programme, jointly with the Electrical Engineering Department).

The Department has well-equipped teaching laboratories and an excellent research infrastructure. The research is broadly focused on topical areas like Condensed Matter Physics, Optics and Photonics, Plasma Physics, and Theoretical & Computational Physics. State-of-the-art research on contemporary topics like Nanoscience and Nano-technology, Energy Materials and Devices, Magnetism, Spintronics, Optical Fibers Sensors & Devices, Photonic Crystals, Optical Memory, Microwave and Laser-plasma Interaction, Quantum Optics Optical Imaging etc. is being carried out.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Department offers a variety of courses to all undergraduate students at IIT Delhi under the categories of Basic 'Science course' and 'Elective Course' requirements. The Department also offers a set of specific 'Core Courses' for the undergraduate programme 'Engineering Physics'. These courses are also available to undergraduate students of other engineering disciplines as Open Electives. Department offers programme linked courses to UG students of some other branches. Department also offers two minor area to UG students.

B.Tech. in Engineering Physics

The programme in Engineering Physics stresses the basic physics that underlies most developments in engineering, and the mathematical tools that are important to all engineers and scientists. This emphasis, combined with hands-on-experience of working with modern computers, electronics, lasers and other equipments, culminates in an excellent preparation for a broad range of careers. There is also provision for students to opt for one of that two departmental specializations : 1) Nano-Science & Technology 2) Photonics Technology 3) Quantum Technologies.

POSTGRADUATE

M.Sc. in Physics

The M.Sc. (Physics) programme is designed to impart masters-level education in Physics through various lecture courses and laboratory classes. The department also offers three specializations in the broad areas of Optics & Photonics, Material Science and Theoretical Physics.
M.Tech. in Solid State Materials

M.Tech. in Applied Optics

The Applied Optics programme, which has been running in I.I.T. Delhi since 1966 is primarily designed to emphasise the “Applied” nature of modern and classical optics. The programme is suited to the requirements of various Optical and Opto-electronic industries and R&D organisations.

Interdisciplinary M.Tech. in Optoelectronics and Optical Communication

This Interdisciplinary programme is offered Jointly by Physics and Electrical Engineering Department. This program trains students in the areas of Fiber & Integrated Optics, and Optical Communication and Networks, which are useful to various industries.

RESEARCH AREAS

Doctoral and post-doctoral research is being carried out in:

- **Condensed Matter Experiments:** The research activity of condensed matter experimental (CME) group at the Physics department covers a wide range of topics such as (i) nanostructured materials, thin films and devices, (ii) novel magnetic multifunctional and topological materials, (iii) spintronics and magnetism, and (iv) wide band gap semiconductors such as GaN and Ga2O3, AlGaN/GaN heterostructures, 2D quantum materials like graphene and transition metal dichalcogenides, Growth and nanoscale devices based on semiconductor nanowires, and (v) optical properties of condensed matter e.g., ultrafast dynamics of condensed matter with femtosecond laser. CME group houses several specialized laboratories as well as several departmental facilities. The CME group has close links with Central Research facilities (CRF) and Nanoscale Research Facility (NRF) of the Institute. NRF houses Class 100 and 1000 clean rooms as well as several characterization facilities. At present, the department has an X-Ray diffractometer, an X-ray photoelectron spectroscopy, a SQUID magnetometer, a physical property measurement system (PPMS), ultrafast-optics laboratory (also housing a Raman spectrometer and a photoluminescence set-up), a pulsed laser deposition (PLD) system and an atomic force microscope as departmental facilities. Individual research labs also have several state-of-the-art facilities, the details of which can be found by visiting the corresponding laboratory web pages.

- **Condensed Matter Theory:** The CMT group has an interdisciplinary focus with broad research interest
spanning form first principles based simulation of designing new materials and understanding their properties using “state-of-the-art density functional theory (DFT) and beyond methods” to the theoretical modelling transport and other properties of various condensed matter systems. We also theoretically model transport in quantum Hall systems, graphene, and topological insulators. Quantum simulation of exotic condensed matter phases with ultra-cold atoms is another area of expertise. Our research also aims to theoretically discover and characterize different topological phases consisting of fractional fermions and Majorana fermions with features uniquely advantageous for topological quantum computing. Using DFT we probe the fundamental physics and related technological applications for atomic and many-atomic complex systems. Some properties of our interest include electronic and band structure, electric and magnetic properties, phonons, magnons and electromagnons in complex (anti)ferroic oxides bulk and nanostructures. We also use ab initio calculation to explore the viability and rational design of real-world functionalized CNT metastable photoswitches and single-photon emitters (SPEs).

- **Statistical and Computational Physics:** Statistical Physics is devoted to understanding macroscopic assemblies of identical particles. Such systems appear over a wide range of length scales in many different fields. We study diverse systems of contemporary interest, ranging from classical solids, exotic liquids, soft materials, mesoscopic systems and active matter to name a few. Broadly, our research encompasses the following themes: (i) emergent phenomena in complex spin systems with disorder and long-ranged interactions; (ii) non-equilibrium properties of complex fluids such as liquid crystals, ferronematics and patchy colloids; (iii) miniature heat engines, and particle and heat transport in mesoscopic systems; (iv) motility of micro-organisms on surfaces and micro-swimmers in Newtonian and non-Newtonian fluids; (v) pattern formation in granular materials; and (vi) mechanics of extremely flexible structures such as thin films. We use a variety of analytical techniques from equilibrium and non-equilibrium statistical physics, computational techniques such as Monte Carlo, parallel tempering, molecular dynamics and graph cuts along with experiments involving state-of-art imaging techniques and sensitive mechanical characterization.

- **High Energy Physics:** High energy physics encompasses both the very small and the very large distance scales — of elementary particles (femtometer scale) and of the observed universe (cosmology)! It is well described by the standard model, which brings together three fundamental interactions — electromagnetic, weak and strong.

Collider physics is a tool which combines both perturbative and non-perturbative aspects of these interactions. We study particle production in collider interactions in an attempt to understand both. In particular, strong interaction, described by quantum chromodynamics, is per se notoriously difficult. We employ effective field theoretical techniques to understand its non-perturbative aspects — to study low
energy properties of hadrons and quark gluon plasma. We also use them to study particle production in gravitational fields, and also some aspects of quantum gravity.

Standard model, though stupendously successful, is still incomplete which makes HEP even more exciting. There are several theoretical problems; even more, there are experimental hints for rich physics beyond the standard model. We study this in the context of topics such as neutrino physics and dark matter.

- **Optics and Photonics:** Historically the Physics Department at IIT Delhi has a strong background in broad areas of Optics and Photonics. IIT Delhi started the first Optics Master's program in the country in 1960's. At present the Physics Department has approximately 15 faculty members engaged in Optics and Photonics related research. Current research activities span a wide ranging topics that include areas of fundamental importance (e.g. Physical Optics, Statistical Optics, Singular optics and inhomogeneous polarization states, quantum photonics, non-linear optics, nano-photonics/metamaterials, light propagation in random media) as well as cutting edge applied research areas (e.g. integrated optics and optical communication, holography, microscopy/nanoscopy, optical metrology, computational imaging, green photonics, illumination engineering, bio-photonics including applications to medical diagnostics, THz optics, ultrafast optics, spectroscopy, optical tweezers, beam engineering, atmospheric optics and development of optical sensors). Optics and Photonics faculty have number of collaborations across different disciplines within IIT Delhi (electrical engg, biosciences/biomedical engg, material science, chemistry), as well as outside IIT Delhi with DRDO, ISRO and other national research facilities like CSIR labs, as well as medical schools/hospitals (e.g. AIIMS), and industry. The department hosts a DST-FIST facility on ultrafast optics that has state-of-the-art instrumentation enabling collaborative work with various disciplines.

- **Physics of Quantum Materials & Information Systems:** The 3 focussed attempts in quantum computation (QC) are- (i) Majorana-based topological quantum computation (TQC) (ii) superconducting qubits based QC and (iii) trapped ion based QC. Importance of the field is evident from the fact that Google and IBM have invested heavily in superconducting qubits while Microsoft has invested in Majorana qubits. The focus of our Department are towards (i) cold atom-based quantum technologies, (ii) quantum photonics and (iii) general Quantum Materials like Topological Insulators, quantum well based semiconductor technologies, spintronics related research etc.

The atoms are cooled to million times colder than room temperature using precisely frequency tuned lasers. The inherent quantum nature of atoms and photons allows one to design versatile quantum systems and fully control their properties by simple and clever approaches. These technological and conceptual developments will lead us to build large scale quantum information processing network, quantum computation protocols for solving industry and society relevant problems.
Some other group of researchers are putting their efforts in the direction of studying Topological semimetals, a quantum phase of matter that host Dirac and Weyl fermions. They study the transport properties of these exotic materials under very low temperature, high magnetic field and high pressures and realise the exotic quantum features in the laboratory scale.

- **Plasma Physics:** Plasmas are known to be the fourth state of matter. These contain large number of positive ions and electrons in almost equal number along with some neutral particles. Negative ions can also occur in plasmas and also there can be dust particles, referring to them as multi-component / dusty plasmas where the charge neutrality holds good. However, the dynamics of plasma greatly alters due to the presence of such additional charges. Each plasma species can contribute to different application of plasma. For example, electrons are responsible for high frequency phenomena including EM radiation generation, whereas the ions contribute to the synthesis of materials, surface hardening, sputtering, deice fabrication etc.

We are primarily working in the broad research areas of intense laser-plasma interaction, plasma-material interaction, plasma propulsion, plasma based radiation sources, and dusty plasmas. We employ theoretical approach including nonlinear physics as well as numerical methods, namely, hydrodynamics, molecular dynamics and particle-in-cell (PIC) techniques to investigate some of the above areas and also perform experiments.

- **Atomic and Molecular Physics:** Our area of interest is ion-atom/molecule/cluster/ices collisions. Heavy ion impact ionization and fragmentation of the molecules of biological and astrophysical interest are studied. Our area of expertise include secondary electron spectroscopy, recoil-ion-momentum spectroscopy and Infrared spectroscopy. We are also interested in development of equipments which are useful in atomic physics experiments and our aim is to collaborate with the industry to make them commercially available.

- **Astrophysics:** Research in the Astrophysics group at the Physics Department, IIT Delhi revolves around open questions such as:

 a) What is the small scale structure of space time?
 b) How do the matter and gravity interact in the quantum picture?
 c) What leads to the emergence of “classical” reality?
 d) What are the quantum effects in gravity and how to test them?

In tandem with this, we also make contact with observations in Astronomy and Astrophysics, especially employing Optical and Radio data. In an ongoing effort in this direction, we are involved in mapping the magnetic field of our galaxy, the Milky way, through pulsar observations.
LABORATORY FACILITIES

The Department has well-equipped laboratories for both teaching and research programmes. Some of the major research laboratories are: Solid State Physics Laboratory, Thin Film Laboratory, Magnetics & Advance Ceramics Laboratory, Nano-Stech. Laboratory, Plasma Physics Laboratory, Beam Plasma Laboratory, Fibre and Integrated Optics Laboratory, Laser Spectroscopy Laboratory, Optical Image Processing Laboratory, Quantum Electronics Laboratory. A large number of facilities are available in these and other laboratories and these include: Electron Microscopes (HRTEM, FESEM, TEM, SEM), Atomic Force Microscope (AFM), Scanning Tunneling Microscope (STM), MOKE Microscope, Scanning Auger Microprobe (SAM), Electron Spectroscopy for Chemical Analysis (ESCA). Photovoltaic, Thermoelectric and Photo electro chemical Characterization facility, Powder and Thin Film X-ray Diffractometers, XRR, FTIR Spectrophotometer, Laser Raman Spectroscopy System, SQUID Magnetometer, Dielectric and Ferroelectric set-up, Arc-melting, Auto Lab General Purpose Electrochemical System, Optical Multichannel Analyser, Closed-cycle Helium Cryotip System, High Power Argon-ion/Neodymium/YAG/ Excimer/Dye/Ti: Sapphire Lasers, Optical Photon-correlator, Plasma Diagnostics System, PPMS Facility, Microwave Processing of Materials in a single (E- or H- field) or multiple mode. Ultrahigh Vacuum Units, Vacuum Coating Units, DC and RF Sputtering Units, Concave Reflection Grating, Spatial Light Modulators, Optical Transfer Function Bench, Holographic Recording Set-up, Coherent Filtering Set-up, Facility for Optical Phase Conjugation with Photorefractives, Facility for Fabrication of Tunnel Diodes, Solar Cells, Thin Film Devices and Integrated Circuits, Optical Fibre Splicing and Characterisation Set-up, In-line Optical Fibre Components Fabrication and Testing, Fabrication and Characterization of Planar Optical Waveguides, Erbium doped fibre amplifiers, Optical Spectrum Analyser, Wavelength Meters, High resolution Microscope, DWDM wave length tuned Laser Diode light sources, Long Period Fiber Grating fabrication, variety of optical fibre sensors, and Facility for making High Temperature Superconductors, Plasma and Photo CVD Units, DLTS, PL Facility, Optical CD Fabrication Facility, Indigenously developed HV compatible field emission measurement setup.

A new ultra fast optics (UFO) facility has been developed in the Department via a DST-FIST Project. This UFO facility is a unique facility that caters to diverse fields of inter-disciplinary research, wherever the research activity demands high power and ultrafast light. This facility, serves a wide variety of research activities aiming at the studies of spatial and temporal dynamics of light-matter interaction or stand-alone experiments. Potential beneficiary disciplines of the faculty are expected in the field of Optics, Nano-photonic, Material Science & Nano-science and Technology, Plasma Physics, Optoelectronics, Biology, Biotechnology, Medicine, Chemistry and Private Industries. The facility is expected to be useful to the research of other departments/Centers/Schools of IIT Delhi namely, Chemistry, Biochemical and Biotechnology, Biomedical, Electrical, Textile, CARE, IDDC, Materials Science and Engineering, and School of Biological Sciences.
DEPARTMENT OF TEXTILE AND FIBRE ENGINEERING
Head of the Department

R.S. Rengasamy, Ph.D. (IIT Delhi)
Professor

Ashwini K. Agrawal, Ph.D. (Univ of Rochester)
Professor

R. Alagirusamy, Ph.D. (Georgia Tech.)
Professor
Textile Performs for Composite Applications, Natural Fibre Composites, Short Staple Spinning, Structure Property Relationship of Yarns, Textile Reinforced Concrete.

S. Wazed Ali, Ph.D. (IIT Delhi)
Associate Professor

B.K. Behera, Ph.D. (IIT Delhi)
Professor
Fabric Manufacturing, 3D Weaving and Textile Structural Composites, Textile Reinforced Concrete, Mechanics of Textile structure, Project Management.

Vijaykumar Narayandas Baheti, Ph.D. (TU Liberec, Czech Republic)
Assistant Professor
Advanced Materials Utilizing Fibrous Industrial Wastes; Ball Milling of Fibrous Materials in Dry and Wet Condition; Activated Carbon Fabric Structures; EMI Shielding and Joule Heating Fabrics; Textile Reinforced Composites and Concrete Structures; Recycling of Textile Wastes.

B.S. Butola, Ph.D. (IIT Delhi)
Professor
Shear Thickening Fluids and Ballistic Textiles, Textile Finishing With Metal Oxides and Bio Materials, Polymeric Nano Composites.

R. Chattopadhyay, Ph.D. (IIT Delhi)
Professor
Yarn Manufacturing Processes, Quality Assurance, Ropes and Cordages, Product Development.

Apurba Das, Ph.D. (IIT Delhi)
Professor
Clothing Comfort, Nonwoven & Technical Textiles, Compression Bandage, Protective Clothing, Yarn Manufacturing, Instrumentation.

Dipayan Das, Ph.D. (Tech. Univ. of Liberec)
Professor

Saurabh Ghosh, Ph.D. (Basel Univ., Switzerland)
Professor
Tissue Engineering, Medical Textile, 3D Bioprinting.
Bhuvanesh Gupta, Ph.D. (IIT Delhi)
Professor

Deepi Gupta, Ph.D. (IIT Delhi)
Professor
Eco Friendly Finishing of Textiles, Garment Sizing, Functional Clothing, Product Development.

Manjeet Jassal, Ph.D. (IIT Delhi)
Professor
Speciality & Innovative Polymeric Materials for Textile Applications, Smart Textiles, Nanomaterials and Nanomaterials reinforced composites, Electrospinning.

Bhanu Nandan, Ph.D. (Kanpur Univ.)
Associate Professor

Amit Rawal, Ph.D. (Univ. Bolton)
Professor
Nonwovens, Modelling of Fibrous Assemblies, Technical Textiles.

Kushal Sen, Ph.D. (IIT Delhi)
Professor
Textile Chemical Processing, Texturing of Synthetics/Natural Fibres and Blends, Special Finishes, Structure-property Correlations, Conducting Textiles.

Javed Nabibaksha Sheik, Ph.D. (I.C.T. Mumbai), FSDC
Assistant Professor

Rajiv K. Srivastava, Ph.D. (KTH, Sweden)
Associate Professor
Porous and Fibrous Matrices, Reactive Electro-spinning and Prototyping, Green Polymerization Methods, Biodegradable Polymers.

S.M. Ishtiaque, Ph.D. (Tech. Univ. of Liberec)
Emeritus Professor
INTRODUCTION

The departmental activities are focused on niche and futuristic area, such as technical & smart textiles, nanotechnology applications, biotextiles, engineering of functional apparel, etc. The department has tie-ups with several universities in India and abroad.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The B.Tech. programme in Textile Technology covers development and characterization of the polymeric raw materials and methods of conversion of the same into textile materials followed by further value addition and appropriate engineering into niche products. Issues related to the management of the production facilities and marketing the products are also covered adequately.

POSTGRADUATE

The M.Tech. programme, in Textile Engineering focuses on training for mechanical processing of textile fibres into various textile products. The M.Tech. programme in Fibre Science and Technology trains students for the manmade fibre industry as well as in the chemical processing of textile materials. M.Tech. programme on Textile Chemical Processing focuses on advanced science and technology used in wet processing and trains students for the Textile Chemical Processing industry.

All M.Tech. programmes train students for both research and academic careers.

RESEARCH AREAS

Current areas of doctoral and post-doctoral research include study of structure and properties of fibres and fibrous materials, analysis and design of yarn and fabric formation systems, mechanics of production processes, comfort properties of textiles, optimization and mechanism of dyeing and preparatory processes, eco friendly processing, micro encapsulation, antimicrobial finishes, nanotechnology applications, plasma treatment, design of technical textiles, smart and innovative textiles, electroconductive textiles, medical textiles and tissue engineering, polymer composites and apparel engineering. The activities are supported by several funded projects.
LABORATORY FACILITIES

The Department has several state of art laboratories which are briefly described below:

- **Fibre Science and Fibre Production Laboratory:** This laboratory houses facilities starting from fibre production to fibre characterization. It hosts a complete range of characterization equipment such as DSC, TGA and TMA, Brookfield Rheometer, FTIR, Wide angle X-ray diffractometer, sonic modulus analyzer, etc. It also houses facilities for polymerization from small to pilot scale. Recently bicomponent fibre production facility has also been installed.

- **Yarn Manufacturing Laboratory:** This Laboratory houses a wide range of machines for producing yarns with different technologies at research as well as production scale. Staple fiber yarns can be produced by using ring, and friction spinning technologies. Miniaturized spinning machines are also available for small-scale preparation of yarn samples.

- **Fabric Manufacturing Laboratory:** The Weaving section is equipped with modern preparatory machines and looms. Preparatory section includes latest Schlafhorst 332 model winding machine, Savio lab model Orion winding machine and sectional warping machine with all controls. In weaving section- projectile, rapier, water jet and airjet looms as also a sample loom along with single end sizing and warping machine are installed. Apart from these, the lab is equipped with needle loom for tape and label, Staubly electronic dobby and Bonas electronic jacquard. Weaving section is also equipped with a CAD station system for both woven and printed design. Knitting section includes flat knitting and circular machines. Nonwovens Research laboratory is part of this lab. Industrial sewing machines constitute the garment technology facility.

- **Textile Chemical Processing Laboratory:** Housed in this laboratory are lab scale versatile equipment for chemical processing of textile fabrics, yarns and fibres. In addition, the laboratory contains relevant analytical/testing equipment for assessing performance of treatment imparted to textiles including computer colour matching system, spectrophotometers, fastness tester, Flame retardancy tester and a full-fledged antimicrobial testing facility. Textile chemistry laboratories are equipped with a wide range of dyeing, printing and finishing machines including IR dyeing machines, HT-HP dyeing machine, lab scale jigger and padding mangles. New additions include magnetic levitation based yarn dyeing system, Plasma machine for surface functionalization, Weather-o-meter, Cone calorimeter, Limiting oxygen index tester, Vertical flammability tester, Electro-chemical work station, Freeze dryer and Rota evaporator, BOD, Padding mangle, Drying & curing chamber, High temperature steamer, etc.

- **Textile Testing Laboratory:** Physical Testing Laboratory of the department is a state of the art lab for testing textile fibers, yarns and fabric.
» **Fiber:** Physical properties of fibers like length, strength, fineness, maturity etc. can be accessed with various basic instruments as Baer sorter to advanced instruments like HVI which is commonly used in industry for analyzing fiber related physical parameters.

» **Yarn Testing:** Physical properties of yarns are important for its further use in fabric production. Various physical properties of yarns affect the quality of fabrics. Instruments available for testing of yarn properties are Premier yarn evenness tester, Statex automatic yarn twist tester, CCT Dynamic yarns strength tester, Statimate automatic yarn tensile tester, Zweigle Yarn hairiness teste, Lawson Hemphill and Yarn friction Tester.

» **Fabric Testing:** Fabric can be tested for its physical and thermal behavior for its different applications. Most common physical properties are thickness, tensile strength, tear strength, crease recovery, bending stiffness and drapability. Properties like hydrostatic head testing, pilling, abrasion testing, bursting strength and air permeability of fabric are also important. Some other important instruments available for testing of various properties of yarn are, thickness tester, GSM cutter for areal density, INSTRON 3365 for tensile testing, Elemnondorf tear tester, Eureka bending stiffness tester, Martindale pilling and abrasion tester, Static honestometer for static charge decay, SDL Atles moisture management tester, TruBurst bursting strength tester, Shirley hydrostatic head tester, hot plate guarded sweat test for thermal and evaporative resistance of fabrics, Kawa bata tester, Getz water wicking tester and water vapor permeability tester.

- **SMITA Research Laboratory:** SMITA Research Lab has emerged as a prime centre of research in the field of Smart Materials and Innovative Textile Applications. Centre has been instrumental in developing novel technologies with key focus on areas like nanomaterial based specialty finishes and coatings, advanced composite fibres and films, nanofibres, responsive materials, atmospheric pressure plasma processing and wearable electronics. SMITA Research Lab owns the world class and most modern state of the art facilities under one roof for ultra-precision analysis and development of the next generation technologies. Some of the important facilities are High Resolution TEM 200 KV with EDS and EELS, FESEM with Oxford EDS system, FESEM with peltier stage, 400 MHz Solid and liquid state ready NMR, Confocal dispersive Raman microscope with automated stage, Micro Tensile Tester, Capillary flow meter, Rotational Rheometer, Melt Capillary Rheometer, Pressure Drop Analyser with Particle Counter, Electrical property measurement system, GCMS, FTIR-ATR, Differential viscometer and RI detector, DSC, TGA, AFM etc. Centre has a fully equipped chemical lab and houses top notch sample preparation and pilot facilities like Padding, drying and curing units, Plasma processing unit, Bicomponent fiber melt spinning unit, Pilot Reactors, Microbial testing lab, Continuous melt coating unit, Electrospinning systems, Twin Screw Extruder, high temperature muffle furnace, IR dyeing and laundrometer machine, hydrothermal reactors, spin coater, environmental chamber, etc.
• **Aerostat and Airship Material - Processing and Characterization Lab:** A state of the art laboratory has been set up under Smart and Intelligent Textiles (SITEX) vertical of Joint Advanced Technology Centre (JATC) sponsored by ‘Defence Research and Development Organisation’, Govt of India for developments related to Aerostat and Airship Hull. The focus of this lab is to develop advanced coated and laminated textiles using specialty fabrics, polymeric resin and films and adhesives to get light weight, strong, weather resistant material with excellent gas barrier properties. Major processing facilities are– Single Screw Extruder with Extrusion cast Line, Twin Screw Extruder with Mini Injection Moulding machine, Hot Melt Coating and Laminating Machine and Solution coating machine. The testing and characterisation include– Thermal system (DSC/TGA/DMA), FTIR, Weatherometer, UTM, Gas Permeability Tester and Flex Durability Tester.

• **Extreme Cold Weather Clothing Laboratory (ECWCL):** Major facilities of this laboratory include a large climatic Chamber & 34-Zone Newton Thermal manikin with motorized walking motion stand as a part of SITEX (Smart and Intelligent Textiles) funded by DRDO (Defense Research and Development Organization), Government of India under JATC (Joint Advanced Technology Centre) initiative. The emphasis of this laboratory is to do focused research in developing light-weight extreme cold climate multi-layer clothing system for Indian soldiers deployed at Siachen Glacier, the highest battle field on the Earth. The other facilities pertaining to ECWCL are: In-house developed fabric thermal insulation tester placed inside a climatic chamber, and water-vapor transport testers.

• **JATC Soft Body Armour Materials Laboratory:** The objective of this research lab is to develop soft body armour materials using high performance fibres like Kevlar, Dyneema, Spectra, Zylon etc.. 2D and 3D fabric structures are woven by varying various structural parameters on single rigid rapier loom. Often these fabrics are treated with silica based shear thickening fluid (STF) and nano additives. Finally, fabrics and soft armour panels are evaluated for impact resistance using drop tower and ballistic resistance using 9 mm lead core bullet.

The facility houses Sample loom for 3D weaving, Compression moulding machine, Super mass collider, Padding mangle, High energy drop tower, Rheometer and UV transmittance analyser.

• **Focus Incubation Centre for 3D weaving and Structural Composites:** This centre was established with the financial support from Ministry of Textiles, Govt. of India. The objective of this centre is to develop variety of innovative 3D woven structures such as 3D solid structures, spacer fabrics, honeycombs, profiled fabrics, tubular structures, aerodynamic structures, stiffeners and 3D auxetic structures primarily suitable for structural composite preforms. The centre also converts these complex 3D fabrics into their respective composite materials. Apart from development of various 3D fabrics and structural composites, the center is equipped with the facilities to characterize these materials. The characterization includes mechanical
performance, structural analysis, damage analysis and surface morphology investigation of preforms as well as composites. As of now, the department has already acquired some major facilities such as 3D weaving machine using multi beam looms as well as creel fed loom, 4-axis Filament winding machine, Compression moulding machine, VRTM system, UTM with flexural, compression, shear test modules, Impact testing both by drop weight and Izod system, Scanning Electron Microscopy, Fabric thermal tester, and many other ancillary equipment relevant to 3D weaving and composite processing.

- **Regenerative Engineering Laboratory:** This laboratory houses experimental facilities to conduct research at the interface between fundamental and applied research, by combining the principles of Textile Technology (Medical Textiles) and Tissue Engineering to (a) develop novel engineering solutions for complex clinical diseases; (b) gain better qualitative and quantitative understanding of the tissue micro-environmental conditions fundamental for tissue development and pathogenesis; (c) develop patient-specific constructs by 3D Bioprinting.

- **Computer and Microprocessor Laboratory:** Facilities in these labs are used by students for course work, internet search, preparing reports, analyzing test data and preparing presentations. The microprocessor section of this lab is used to teach control and monitoring systems.

- **Resource Centre and Library:** The resource centre is a repository of resources essential for investigators to further their research, for a student to continuously upgrade his knowledge database and for a teacher to keep abreast with the state of art in today’s world of textiles. The resource centre has a wide compilation of books, reports, theses (Ph.D., M.Tech. and B.Tech.) and journals. It also has a rich collection of samples of technical textiles for various applications.
Arun Kumar, Ph.D. (IIT Kanpur)
Professor

Mahesh P. Abegaonkar, Ph.D. (Pune Univ.)
Associate Professor
Microwave Engineering, Antennas.

Monika Aggarwal, Ph.D. (IIT Delhi)
Professor
Signal Processing, Communication, Sensor Array Processing and Underwater Acoustics.

Prabhu Babu, Ph.D. (UU, Sweden)
Assistant Professor
Signal Processing and Communications, Machine Learning and Optimization.

Anjan Basu, Ph.D. (Univ. of California)
Professor
Microwave and Millimeter-wave Engineering.

Samaresh Das, Ph.D. (IIT Kharagpur)
Associate Professor
Quantum Electronics, Optoelectronics and THz.

Kirti Dhwaj, Ph.D. (University of California, Los Angeles, USA)
Assistant Professor
Antenna Systems.

Ankur Gupta, Ph.D. (IIT Bombay)
Assistant Professor
MOS and III-V Device Design, DC/RF Measurements and Modelling, CMOS Circuit Design.

Rahul Mishra, Ph.D. (NUS, Singapore)
Associate Professor
Nanoelectronics, Spintronics, Neuromorphic Devices.

Pushparaj Singh, Ph.D. (NTU, Singapore)
Assistant Professor

R. Bahl, Ph.D. (IIT Delhi)
Emeritus Professor
S.K. Koul, Ph.D. (IIT Delhi)
Emeritus Professor
Microwave and Millimeter Wave Engineering, Antennas and RF MEMS.

Vikram Kumar, Ph.D. (Lehigh Univ.)
Honorary Professor
Semiconductor Physics and Technology, Nanotechnology.

Ulrich L. Rohde, Ph.D. (Clayton University, USA)
Honorary Professor
Microwave circuits, (Amplifiers, Oscillators and Mixers) as well as Frequency Synthesizers.

S.K. Koul, Ph.D. (IIT Delhi)
Emeritus Professor
Microwave and Millimeter Wave Engineering, Antennas and RF MEMS.

Vikram Kumar, Ph.D. (Lehigh Univ.)
Honorary Professor
Semiconductor Physics and Technology, Nanotechnology.
INTRODUCTION
The Centre for Applied Research in Electronics focuses on research and training in specialized areas of Electronics. These areas are Signal Processing, Microwaves and Microelectronics. The Centre has several excellent laboratory facilities for intensive hands-on post-graduate training and conducting advanced research work.

ACADEMIC PROGRAMMES

POSTGRADUATE
M.Tech. in Radio Frequency Design and Technology (RFDT) [Duration: 2 years/4 Semester]
A multidisciplinary Masters programme in Radio Frequency Design & Technology (RFDT) is offered by the Centre. The programme provides specialization in Signal Processing / Microwaves / Microelectronics. This course is unique in India imparting hands-on training that focuses on hardware and experimental work in a wide range of topics like real-time digital signal processing and applications, speech and audio signal processing, wireless and underwater communications, antenna design, active and passive circuit design at microwave and millimeter wave frequencies, fabrication of solid-state devices, MEMS based sensors and actuators, RF MEMS etc. The projects done by the students provide an opportunity to do applied research work that is often of great relevance to industry.

RESEARCH AREAS
The Centre offers doctoral programme that is highly rated in the country.
- **Microelectronics**: MEMS and Microsystems, Nanoelectronics, Microsensors development for defense, space, health and environmental monitoring, mm-wave and THz devices and technologies.

LABORATORY FACILITIES
The Centre has several state-of-the art facilities, this includes:
- Water-tank facility for underwater acoustics experiments
- Acoustic Anechoic Room for air acoustics/audio experiments
- Transducers, sensors, amplifiers and other electronics equipment for underwater and air acoustic research experiments
- Multi-channel data acquisition systems
- Computational platforms for high-speed DSP
- ABM Mask Aligners
- Laser writer (direct lithography)
- Multi-target DC and RF sputtering system
- E-test for microdevices (under variable temperature and pressure)
- E-beam evaporator
- Reactive Ion Etching
- Diffusion and oxidation furnace
- HF vapour etching systems
- RF Anechoic Room for antenna testing and characterization
- Vector network analyzers (up to 1THz) and Spectrum Analyzer (up to 40 GHz)
- Probe stations, Free space material property measurement
- RF MEMS and EM simulation tools
- Microwave Signal Sources
- THz detector testing bench
Head of the Centre

Krishna Mirle Achuta Rao, Ph.D. (Tulane Univ. USA)
Professor
Climate, Climate Modelling, Climate Model Validation, Climate Variability, Climate Change Detection and Attribution, Ocean Heat Content, Sea-Level Rise, Air-Sea Heat Transfer and Climate Data Analysis Tools.

Manju Mohan, Ph.D. (IIT Delhi)
Professor

A.D. Rao, Ph.D. (IIT Delhi)
Professor
Ocean State Forecasting, Storm Surge Modeling, Coastal Circulation, Internal Waves.

Saroj K. Mishra, Ph.D. (IISc., Bangalore)
Associate Professor
Climate Modelling, Indian Monsoon, Climate Projection, Climate Change, Climate Mitigation and Adaptation, Tropical weather and Climate.

Sagnik Dey, Ph.D. (IIT Kanpur)
Associate Professor
Air Quality, Climate Change and Human Health, Aerosol-Cloud-Climate Interaction, Remote Sensing of the Earth’s Climates System.

Sarvesh Kumar Dubey, Ph.D. (IIT Delhi)
Assistant Professor
Atmospheric Modelling, Atmospheric Dynamics, Numerical Weather Prediction, Climate Modeling, Observational Analysis and Tropical Meteorology.

Vimlesh Pant, Ph.D. (Univ. of Pune)
Associate Professor
Physical Oceanography, Ocean Modelling, Air-sea Interaction, Atmospheric Aerosols, Meteorological and Oceanographic Observations.

Ravi Kumar Kunchala, Ph.D. (University of Pune)
Assistant Professor
Somnath Baidya Roy, Ph.D. (Rutgers, USA)
Associate Professor
Land-atmospheric Interaction, Deforestation, Agriculture, Carbon Cycle; Mesoscale and Boundary Layer Modeling, Regional Climate Change; Renewable Energy Meterology.

Maithili Sharan, Ph.D. (IIT Delhi)
Emeritus Professor
Air Pollution Modelling, Atmospheric Boundary Layer, Computational and Mathematical Methods, Physiological Fluid Dynamics.

Sandeep Sukumaran, Ph.D. (IIT Kharagpur)
Assistant Professor
Climate Modeling, Indian Summer Monsoon, Climate Change.
INTRODUCTION

The Centre for Atmospheric Sciences (CAS) was set up in the year 1979 with the objective of undertaking modelling studies of atmospheric and oceanic processes for a better prediction of monsoon and its variability. Subsequently, the Ministry of Education, Government of India funded the Centre under the Sixth Five Year Plan. The Centre was also co-sponsored by the India Meteorological Department with a view to initiate research and mathematical modelling in meteorology in an academic institute. In 1981, the Planning Commission upgraded CAS to an advanced Centre for research. In order to complement its research activities, the Centre started the Ph.D. programme in atmospheric sciences which was the first of its kind in the country. In 2008, CAS started the M.Tech. programme in “Atmospheric and Oceanic Sciences & Technology” with the support of Ministry of Earth Sciences and Indian Space Research Organization. In the year 2011, the UG Minor Area Programme “Atmospheric and Oceanic Sciences” was initiated, which is the only one of its kind in the country. Currently, the Centre has faculty strength of 13. In the last five years, 30 Ph.D. and 50 M.Tech. degrees have been awarded by the Centre. Based on the number of research publications, degrees awarded, courses offered and student/faculty strength criteria, we estimate that CAS is ranked nationally among the top two Centres/Departments in the field. According to the 2011 US National Academy of Sciences benchmarking criteria, we also compare favorably with all US Centres/Departments in our discipline.

ACADEMIC PROGRAMMES

Currently CAS has three vibrant teaching programmes, namely:

- B.Tech. Minor Area in Atmospheric Sciences
- M.Tech. in Atmospheric-Oceanic Science & Technology
- Ph.D.

UNDERGRADUATE

The Centre has initiated Minor Area Programme in Atmospheric Sciences since 2011-12. In this minor area programme, there are six courses exclusively designed for UG students, which deal with fundamentals of weather, climate, climate change, oceanography, monsoon, earths physical processes climate modeling. UG Students need to take at least 2 courses from this pool for minor area.

The students also have options for 26 electives where they have a wide range of choice from various applied courses covering all important topics in atmospheric and oceanic sciences. In order to complete the Minor Area Programme in Atmospheric Sciences, students need to earn 20 credits from among these courses. A minor area project of 5 credits is also introduced as part of the minor area programme to facilitate completion of 20 credits.

POSTGRADUATE

i) The M.Tech. Programme in Atmospheric-Oceanic Science & Technology is designed to train students from
diverse backgrounds in the exciting field of Weather and Climate. The courses are also oriented to help the graduate students get employed in government organizations, public and private sectors or continue in a doctoral program within the country and abroad. There are 11 core courses including three bridge courses and a Major Project. Major projects provide opportunities to students to work on state-of-the-art research topics in diverse areas of Weather, Climate and Atmospheric transport of pollutants. In addition to these core courses, there are a number of electives which include all state-of-the-art topics in atmospheric and oceanic sciences. Some special modules for one credit are also floated every semester which are usually timed with the visits of distinguished scientists from inside the country and abroad.

In order to complete the M.Tech. programmes in Atmospheric Sciences, students’ need to earn 54 credits from among these courses.

ii) The Ph.D. programme is for highly motivated students interested in an academic career. In addition to a thesis on a state-of-the-art topic, students are required to complete 12 (for M.Sc. qualifying degree) or 6 (for M.Tech. qualifying degree) credits of coursework.

RESEARCH AREAS

The goal of CAS is to carry out cutting-edge interdisciplinary research and create highly skilled manpower through M.Tech. and Ph.D. programmes in 4 core areas: atmospheric modeling, oceanic modeling, air pollution and climate science. In the last five years, CAS faculty has published about 200 publications in peer-reviewed SCOPUS Journals. Regular seminars by distinguished speakers of International repute from India and abroad are arranged in the Centre so that our faculty and students can keep abreast of the latest scientific developments in the field.

Key Research Areas:

• **Ocean:** Ocean Modeling, Coastal Processes, Ocean State Simulations and Forecasting, Storm Surges and Inundation.

• **Climate:** Climate Dynamics, Climate Variability and Changes, Climate Change Detection & Attribution, Global and Regional Climate Modeling, Climate Projections, Climate Change Impacts on Extreme Weather, Health, Agriculture, Water Resources and Energy, Aerosol-Cloud-Climate Interactions.

• **Air Pollution Modeling:** Urban Meteorology, Chemical Transport Modelling, Air Quality and Health Impact Studies, Heat Island Measurements and Modelling, Fog Prediction.

• **Applied Mathematics:** Numerical Methods, Data Assimilation and Adjoint Modeling, Inverse Modeling, GPU Computing.

LABORATORY FACILITIES

The Centre for Atmospheric Sciences is establishing a state-of-the-art Atmospheric Observatory at the IIT Delhi Sonipat Campus. The following laboratories are in the Main Campus:

- Computing Server Lab
- Remote Sensing Lab
- Atmospheric Measurement Lab
- Mesoscale Modelling Lab
- Climate Modelling Lab
- Air Quality Modelling Lab I & II
- Ocean State Forecasting Lab

a) IIT Delhi PADUM HPC System:

Partial funding is provided by CAS in the form of DST-FIST grant (500TB & 60 Tera-Flop) for the procurement of the Hybrid High Performance Computing Facility named PADUM (1 Peta-flop, 1500TB) at IIT Delhi. CAS receives more computing time compared to users from other department of IIT Delhi on the PADUM HPC system.

IIT Delhi HPC PADUM system has following configurations:

» High Power Hybrid Computational Facility of 1 PFlops
» Total 606 compute nodes (382 CPU + 201 GPU + 23 Xeon Phi nodes)
» In addition, there are 4 general login nodes, 2 GPU login nodes and 2 Xeon Phi Login nodes.
» Storage capacity of 1500 TB

b) Sikka: A 320 TB storage-cum-data analysis server located in the Center’s Computing Server Lab.

c) Storage: A 115TB data storage server located in the Center’s High Computing Server Lab.

The computing laboratories at the Centre are equipped with state-of-the-art desktop workstations for data analysis and visualization with software’s such as ERDAS imagine, ArcGIS etc.

The following equipment are available for atmospheric pollution and related observations:

- 10 metre tall Met. tower
- Automatic Weather Station
- Albedometer
- AQMS IMD-IITD SAFAR station
- PM10, PM2.5, Ozone, CO and NOx analysers
- Microtops Radiometer
- Aethalometer
CENTRE FOR AUTOMOTIVE RESEARCH AND TRIBOLOGY
(Formerly ITMMEC)
B.K. Panigrahi, Ph.D. (Sambalpur Univ.)
Professor
EV, Charging Infrastructure, IoT & Cyber Security.

V.K. Agarwal, Ph.D. (IIT Delhi)
Professor
Dilute and Dense Phase, Pneumatic Handling of Bulk Solids and Erosive Wear.

Saptarshi Basak, Ph.D. (IIT Kharagpur)
Assistant Professor

J. Bijwe, Ph.D. (IIT Delhi)
Professor
Tribology of Polymers / Composites, Oil Analysis for Condition Monitoring.

Akhil Garg, Ph.D. (NTU Singapore)
Assistant Professor
Evs Components and its Design; Battery Management System; Cooling Systems for Batteries; Multidisciplinary Design Optimization.

Deepak Kumar, Ph.D. (IISc., Bangalore)
Associate Professor
Nanotribology, Tribodynamics, Surface Coating, Metal Working Fluid, Light Metals & Alloy, Nano Composite Grease.

S. Fatima, Ph.D. (IIT Kharagpur)
Assistant Professor
Machinery Health Monitoring, NVH, Acoustical Natural Materials, Reliability and Maintenance.

Krishna Raj R., Ph.D. (IISc. Bangalore)
Assistant Professor
Powertrain-Drives and Control for Electric Vehicles, more Electric Aircraft Power System, Multilevel Converter Topologies for Drives.

Naresh Tandon, Ph.D. (IIT Delhi)
Emeritus Professor
Vibration and Acoustic Emission Monitoring, Noise Engineering.
INTRODUCTION

CART, (formerly known as ITMMEC) has been established in May 2019 with a vision to promote interdisciplinary research in Electric Vehicles (EV) and related areas.

Following are the five major verticals of CART:

- Electric Vehicles (EV)
- Energy Storage and Monitoring
- Automotive Health Monitoring
- Calibration and Diagnostics
- Tribology

As this new entity has been evolved from ITMMEC, the current strength of the center is in Tribology but it will be building expertise in all other verticals very soon.

ACADEMIC PROGRAMMES

POSTGRADUATE

The Centre offers, a new M.Tech. programme in “Electric Mobility“ which is multidisciplinary in nature and will cover key aspects related to electric vehicles, drive-train, chargers and charging infrastructure, battery energy storage systems, battery management system, reusability of energy storage elements, reliability, automotive health monitoring, Automotive NVH (Noise, Vibration, and Harshness), vehicle dynamics, autonomous and connected vehicles, vehicular telematics, and materials for electric vehicle, along with hands on practice and design in laboratories.

The Ph.D. and M.S.(R) programmes are also offered in the above thematic areas.

LABORATORY FACILITIES

The Centre has excellent facility for experimental, analytical and development research activities. With its highly specialized manpower, the Centre interacts with industries through consultancy, field service and also joint sponsored research programmes.

The Centre has well-equipped laboratories, which are:

- Lubrication and Oil Monitoring Laboratory,
The ongoing research areas of the Centre are:
Condition monitoring of machinery using vibration, noise, acoustic emission and wear debris, thermography, oil analysis, vibration and acoustic emission monitoring of bearing and gears, noise evaluation and control, Tribology of fiber reinforced polymer composites and nano-composites, friction, wear, and lubrication of machines and components, Tribology of non-asbestos friction materials, boundary lubrication studies, hydrodynamic and elastohydrodynamic lubrication (EHL), Engine Tribology, wear studies, development of wear resistant coating, nano-composite greases, aqueous lubrication. Design and troubleshooting of pneumatic conveying systems, residual life assessment of oils, friction and wear studies of composites and elastomers, maintenance, reliability and safety of mechanical systems.
CENTRE FOR

BIOMEDICAL ENGINEERING
Naresh Bhatnagar, Ph.D. (IIT Delhi)
Professor
FRP Composite Materials, Processing and Manufacturing, Injection Molding, Biomaterials.

Jayanta Bhattacharyya, Ph.D. (IICT, Hyderabad)
Assistant Professor
Biomaterials, Drug Delivery, Cancer Diagnosis & Therapy.

Sachin Kumar B., Ph.D. (IISc. Bangalore)
Assistant Professor
Biomaterials, Application of Raman Microscopy and Spectroscopy for Tissue Engineering, Graphene-Polymer Composite, Cancer Metabolism, Liquid-Liquid Phase Separation in Biology, Fibrin-Platelet Interaction.

Arnab Chanda, Ph.D. (Univ. of Alabama)
Assistant Professor
Artificial Tissues, Footwear, Sensors, Wearable Technologies, Entrepreneurship.

Dinesh Kalyanasundaram, Ph.D. (Iowa State University, USA)
Associate Professor
Biomechanics, Diagnostics, Design and Development of Implants (Orthopaedic & Orthodontics), Fabrication/Machining of Materials (Laser Machining).

Associate Professor
Quantitative Medical Image Analysis for CT and MRI, Perfusion and Diffusion Imaging, Neuro-rehabilitation, Mobile Healthcare.

Biswa Mukerjee, Ph.D. (IIT Madras)
Assistant Professor
Ultrasound Imaging, Bioinstrumentation, Sensors, Biomechatronics, Rehabilitation and Prosthetics, Haptics.

Sandeep Kumar Jha, Ph.D. (Bhabha Atomic Research Centre, Mumbai)
Associate Professor
Biosensors; Nanoparticle Sensing; Microfluidic Lab-on-a-chip; Capillary Electrophoresis Microchip; Immobilization and Stabilization of Biomolecules.

Anup Singh, Ph.D. (IIT Kanpur)
Associate Professor
Development of Magnetic Resonance Imaging (MRI) Techniques/Methods based on Exogenous or Endogenous Contrast Agents, Medical Image Processing and Data Analysis.

Deepak Joshi, Ph.D. (IIT Delhi)
Assistant Professor
Biomedical Instrumentation, Rehabilitation Engineering.

Harpal Singh, Ph.D. (IIT Delhi)
Professor
Medical diagnostics, Drug Delivery Systems, Antimicrobial Polymers, Polymeric Hydrogels, Nanobiotechnology, Polymer based Implants & Medical Devices.
Biomedical Engineering

Neetu Singh, Ph.D. (Georgia Tech., USA)
Associate Professor

S.K Guha, Ph.D. (St. Louis University)
Honorary Professor
Padma Shri, 2020

Veena Koul, Ph.D. (Kashmir Univ.)
Emeritus Professor
Biomaterials, Medical Devices, Clinical Diagnostics, Drug/Gene Delivery Systems, Nanomedicine.
INTRODUCTION

Centre for Biomedical Engineering was established in 1971 as a Joint programme of Indian Institute of Technology, Delhi and All India Institute of Medical Sciences, Delhi. The Centre has applied engineering principles to address medical and biological problems. It has faculty from diverse backgrounds who are actively engaged in various interdisciplinary research activities. In addition, the centre has collaborative projects with major institutes and hospitals in India and abroad. Over the years, it has become a premier centre for biomedical research in the country and has provided interdisciplinary base to develop health care technologies. In the last two decades the focus has expanded to include medical imaging, tissue engineering, nanomedicine, implants, biomedical devices, and informatics approaches for the prevention, diagnosis and treatment of diseases.

ACADEMIC PROGRAMMES

The Center has a Ph.D. programme and M. Tech. programme in Biomedical Engineering. Various courses relevant to Biomedical Engineering, which are open to undergraduate and graduate students at IIT Delhi are offered by the Centre. Some of the courses being offered include Introduction to Basic Medical Sciences for Engineers, Industrial Biomaterial Technology, Research Techniques in Biomedical Engineering, Tissue Engineering, Biomaterials, Biosensor Technology, Medical Imaging and Processing, Emerging Biomedical Technology & Health Care, Biomechanical Design of Medical Devices, Cancer: Diagnosis and Therapy, Point-of Care-Medical Diagnostic Devices, Orthopaedic Device Design, Biofabrication, Nanomedicine, and Computational Biomechanics.

M.Tech. students from CBME are pursuing higher studies from reputed universities around the world. Several students are currently employed in leading biomedical and healthcare related companies.

RESEARCH AREAS

The Centre’s research focus spans in four thrust areas:

- **Bio-Instrumentation**: Biosensor, Molecular markers in diseases, Lab-on-a-chip, Microfluidics, Biomedical transducers and sensors, Neuro endoscopy, Integrated healthcare, Assistive devices & rehabilitation, DNA based diagnostics.

- **Biomaterials**: Nanomedicine, Controlled drug delivery systems, Soft skin regeneration, Targeting of bioactive molecules to brain and cancer, Wound care healing, Tissue engineering, Medical diagnostics and therapy.

- **Biomechanics**: Orthopaedics, Orthodontics, Computational analysis and software packaging, Neuromechanics, Neural prosthetics, Soft tissue mechanics, Artificial tissue.

- **Medical Imaging**: Development of protocols, techniques, methodology and software tools along with evaluation of their clinical potential; Medical image processing, Quantitative image analysis; Applications of Machine-Learning/Deep-Learning.
The average number of Ph.D. students graduated over the last 5 years per faculty has been 4.4 and the average SCOPUS cited publication per faculty is 8. The Center has received extramural research funding of ~10 Crores from government funding agencies and ~20 Lakhs as industrial consultancy for the year 2019-2021.

Recently major facilities such as Confocal laser scanning microscope, Raman Spectroscopy with imaging and Flow cytometer has been installed. New labs based on drug delivery, laser micromachining, Lab-on-a-chip and image processing have been established.

Technology Developed by the Centre Include:

MRI Compatible Knee Joint Axial-Load Exerting Device, Wearable gait analysis system, Novel kit for assay of iron in biological fluids, Modulated DC iontophoretic Device, Diblock copolymer in a Nanosystem and Implementations thereof, Contra Lateral Limb Controlled Prosthetic Knee Joint, Wireless ECG patch and system for obtaining High Definition mobile ECG, A Surgical Stapler, Bilayer dressing for wound healing; Biocompatible graphene quantum dots for drug delivery and bioimaging applications, Green Floreoscent Carbon Dots for pH Sensing.

The Centre has in Past Transferred Following Technologies to Industries:

LABORATORY FACILITIES

The Centre has the following laboratory facilities:

- Biomechatronics
- Bioelectronics, Biomechanics & Fabrication
- Biomaterials, Biosensor
- Pre-Clinical and Animal Experimentation (AIIMS)
- Bio-signal Processing
- Soft Tissue Engineering
- Drug delivery Laboratory
- Nanoparticles Characterization
- Biomaterials Instrumentation
- Nanomaterial Synthesis Lab
- Laser Micromachining Lab
- Lab-on-a-chip
- Biomedical Instrumentation
- Medical Imaging Processing
- Molecular Biology
- Bio-therapeutics
- Artificial Tissue Lab
Injection Molding BOY XXS

3D-Printer –Stratasys Objet30 OrthoDesk

400 W CW Fibre Laser

Device Testing Laboratory

Dual Laser (CO₂ + Fibre Laser)

High resolution Spectrometer HR2000 ES
EDUCATIONAL TECHNOLOGY SERVICES
Amit Gupta, Ph.D. (UCF)
Professor
Department of Mechanical Engineering.

Shouribrata Chatterjee, Ph.D. (Columbia University)
Professor
Department of Electrical Engineering

Ashok Gupta, Ph.D. (IIT Delhi)
Professor
Department of Civil Engineering

Shalini Gupta, Ph.D. (North Carolina State University, USA)
Associate Professor
Department of Chemical Engineering

Prem K. Kalra, Ph.D. (EPFL, Switzerland)
Professor
Department of Computer Science & Engineering

Kolin Paul, Ph.D. (BESU)
Professor
Department of Computer Science & Engineering

Sanjeev Sanghi, Ph.D. (City University)
Professor
Department of Applied Mechanics

Kushal Sen, Ph.D. (IIT Delhi)
Professor
Department of Textile and Fibre Engineering
INTRODUCTION

The Educational Technology Services Centre (ETSC) is actively engaged in promoting the use of Educational Technology at the Institute and also at the national level. Some of its major activities are:

- Design & Development of Instructional Resources (videos and web based).
- Provision and maintenance of AV equipment for classroom teaching.
- Video and computer based instructional packages.
- Organize training programmes for faculty and professionals across the country.
- Video conferencing for faculty selection interviews and meetings.
- E-learning and distance education.
- Undertake sponsored research and consultancy projects.
- Offer support for classroom teaching.

The Centre has a modern video studio with recording and editing facilities in DVCAM format. A studio-classroom with seating capacity of 60 is available for on-line recording of courses. Nonlinear editing setup and Apple Streaming server are available for post production and video streaming. ETSC takes care of the audio-visual needs of faculty and students. In addition to equipping the classroom with these facilities, ETSC runs a loan service. A media reference library with multiple viewing cabins has been set up in the Central Library for the use of students and faculty. The Educational Technology Services Centre has a computer laboratory with modern multimedia capabilities and internet connectivity. Computer Aided Instruction/Computer Aided Learning courses/packages are developed in the computer laboratory. Learning materials generated by ETSC are disseminated at nominal price throughout the country and abroad and through the NPTEL, Swayam, and Swayam Prabha Platforms.

The Centre conducts short courses and modular programmes on different aspects of educational technology for teachers and staff from the Institute and from other educational institutions and industry institutions. These courses are designed to sensitize and guide the faculty to optimize their effort and time for classroom and laboratory instruction as well as professional development. The Centre offers its services to departments, individual faculty or groups of faculty members in revising, redesigning and innovating curricula.

The Centre has the expertise and experience of undertaking national and international level consultancy and sponsored research projects. It has worked with agencies such as the World Bank, AT&T, AICTE, UNESCO, UNDP Commonwealth of Learning, British Council and Adis Abada University, Ethiopia. The NPTEL (Phase I and II) project, funded by MHRD have been successfully completed. Under this programme, all the seven IITs and Indian Institute of Science have worked together to develop web and video based education material for undergraduates courses
initially in five disciplines, viz., Civil Engineering, Computer Science and Engineering, Electrical Engineering, Electronics and Communication Engineering and Mechanical Engineering. The web courses so developed are available through the various servers authorized by NPTEL.

As the third phase of NPTEL, ETSC is involved in helping institute faculty develop massively open and online courses (MOOCs) under the NOC/Swayam (NPTEL online certification) platform. ETSC is also coordinating 6 TV channels under Swayam Prabha and IIT-PAL (Civil Engineering, Electrical Engineering, Physics, Chemistry, Mathematics and Biology).

ETSC has procured and installed Sony ANYCAST system in the Video Studio and in two lecture theatres for non linear editing and recording. Video Conferencing facilities have been installed in the two lecture theatres for non linear editing and recording. Video Conferencing facilities have been installed in the two lecture theatres and in the Conference Room of ETSC. The facility is being used for faculty interviews, meetings and distance education. For connectivity both ISDN and IP based network connection are used. For classes to Adis Ababa University, two lecture delivery rooms have been equipped with remote teaching facility. A dedicated two-way video link is also provided for live delivery. Two new lecture rooms have also been equipped with audio/video, projection, distance education and recording facilities. In addition, three Virtual Classrooms are also being equipped under National Knowledge Network (NKN).

The new Lecture Hall Complex (LHC) has state of the art audio visual facilities managed by ETSC. The LHC includes 2 rooms of capacity 500; 3 rooms of capacity 300; 12 rooms of capacity 150; 9 rooms of capacity 60; and 6 rooms of capacity 30. The facilities include live video recording of lectures, tablet PCs for projection of the written lectures on the screens, document visualizers, microphones and speakers in the class rooms.
K. Narayanan, M.Sc. (Delhi Univ.), PDCA
Senior System Manager (SG)
D.B.M.S., System Analysis and Design, System Administration, Web Design & ERP.

Manish Agarwal, Ph.D. (IIT Delhi)
System Architect
HPC & Administration, Large Scale Molecular Simulations, Parallelization of Analysis Codes.

P.K. Baboo, Ph.D. (Berhampur)
Senior System Manager (SG)

Rajesh Bhat, Ph.D. (IIT Delhi)
System Manager
Artificial Intelligence, Distributed and Network Computing, Component & Object Technologies in JAVA, Image Processing, E-Education Technologies, System Administration, Intelligent Imaging in Medicine and GIS.

Raj Kumar Chauhan, M.C.A. (MITS, Gwalior)
System Manager
Networking & Systems Administration.

P.K. Gupta, M.Tech. (IETE)
Senior System Manager (SG)

Ajay Guleria, Ph.D. (NIT Hamirpur)
System Manager
Network & System Administration.

S.R. Hegde, Ph.D. (IIT Delhi)
Senior System Manager (SG)
CAD/CAM/CAE Service.

Pragya Jain, Ph.D. (IIT Delhi)
System Manager
Parallel Processing, Cloud Computing & Virtualization, Systems Administration, Numerical Analysis.

Jaya, M.Tech. (IIT Delhi)
System Architect
System Administration, Application Software, Object Oriented Programming, Programming Languages, DBMS.

Sunil Kak, M.Tech. (IETE)
System Manager
System Administration, Management of PC Services.
N.C. Kalra, M.Tech. (IIT Delhi)
Senior System Manager (SG) (on contract)
Networking, Internet Computing, Microprocessor Based System Design, System Programming.

Gopal Krishen, M.Sc. (Kurukshetra Univ.)
System Manager
Hardware, Networking, Cloud Computing & Virtualization, System Administration, Database Management and DBA.

Ram Lal, Ph.D. (Jamia Milia Islamia University)
System Manager
System Administration, Information Technology, E-Governance, MATLAB programming, Image Processing & Object-oriented Programming.

Gaurav Munjal, B.Tech. (DCRUST)
System Architect
INTRODUCTION
The Computer Services Centre provides round the clock computing and networking facilities to serve a user population of 12,000+ users consisting of Undergraduates, Postgraduates, Research Scholars, Faculty and Staff of the Institute and provide advice on all the aspects of academic computing. The Centre also participates in the academic programmes of various departments and centers.

COMPUTING FACILITIES
The Centre is equipped with 144 HP/CISCO UCS blade servers out of which 112 Blade Servers are used for Cloud computing with 200 TB of virtualized storage and 32 blade servers with 130 TB of storage for user homes and infrastructure use like email, proxy, web services etc. CSC also has around 450 Desktop computers connected over a switched fast Ethernet. Uninterrupted Power Supply is provided through 2x80 KVA MGE UPS system and DG set.

HIGH PERFORMANCE COMPUTING (HPC)
The HPC facility in the Data Centre consists of the following:-

Compute Nodes: 606 (CPU nodes: 405, GPU nodes: 201)
Haswell nodes (422 nodes):
• GPU (161 nodes): NVIDIA K40 (12GB)
• CPU (261 nodes): 2x E5-2680 v3 2.5GHz/12-Core
• RAM: 64 GB
• 12 CPU and 8 GPU nodes have 512 GB RAM each

Skylake nodes (184 nodes):
• GPU (40 nodes): NVIDIA V100 (32GB)
• CPU (144 nodes):
• RAM: 96GB
• 40 GPU and 8 CPU nodes have 192 GB RAM each

In addition, we have 6 login nodes for job submission, monitoring etc.
Storage: Home space: 678 TB and Scratch space: 3430 TB.

PC SERVICES
There are six PC Labs in the CSC premises having about 225+ Desktop computers under Windows10 and Ubuntu environment. Besides this there are four Computing labs in the Lecture Hall Complex (LHC) having 235+ desktop computers running Ubuntu and Windows 10. Projection facility is also provided for the UG/PG courses of the Institute which are held every semester. Every user has been provided a Kerberos user-account and password for logging into the system and also for using Internet facility.
The PC Labs in the main building of the Centre are open Round-the-Clock for authorized users. These labs are extensively used by the departments for conducting UG/PG Lab courses and by general students.

NETWORK SERVICES

The Institute LAN is a state-of-the-art switched network with Fiber Optics and enhanced CAT5/CAT6 UTP backbone. It consists of more than 9000 network access points spread over the campus using about 450 Cisco switches and about 75 virtual LANs. Network access is provided to every student, faculty, Doctor, Laboratory, offices and rooms in guest houses. Internet connection has been provided through a router, redundant firewall switching modules, and 2x10 Gbps from NKN.

IIT Delhi is connected to the National Knowledge Network (NKN) with 10 Gbps dual connectivity from Power Grid and RailTel. This connectivity provides virtual routing service, Internet Connectivity, and connectivity with other Institutes connected on the NKN backbone.

Internet and Intranet access is provided to faculty/officer homes via GPON over fiber (750+ houses) and ADSL connectivity over internal telephone lines.

The Academic, Hostel area, both Guest houses, RCA and Hospital are also connected through IITD_WIFI and Secure Wi-Fi (IITD_Secure_GUEST). There are 1400+ wireless access points. Many network services including mail, web, and domain name, anti-virus is being provided over this network.

FACILITIES/SERVICES

- All Services are authenticated and authorized using a central Kerberos system.
- The email facility is provided to all students, staff and faculty with webmail interface “Round cube”.
- Baadal is a Cloud computing environment that provides virtualized computing resources for academic and scientific environments. Some of the main features of Baadal are: Dynamic Resource scheduling and power management; Facilities for suspend, resume, shutdown, power off, power on, specifying resource requirement of VM; and Dynamic resource utilization monitoring.
- The Data Center (DC) consists of Cisco UCS B200 : Five chassis with 40 blade servers – 16 blades each with 2x12 Cores Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz with 128 GB RAM, 8 blades each with 2x14 cores CPU E5 with 256 GB RAM and 16 blades each with 2x18 cores CPU Intel Xeon Gold 6140 with 256 GB RAM.
- The Disaster Recovery Data Centre (DRDC) is situated in the SIT building. The DRDC has been built by IBM and can support a total IT load of 60 KW. It has redundant UPS power supplies and precision air conditioners in N+N and N+1 configurations respectively.

The CSC provides Infrastructure Services through Virtualization technology.

The CSC has Microsoft Volume Licensing EES agreement for the Campus under which Microsoft software such as Windows OS, MS Office, Office365 etc. are available for use.
The center also has the following third-party software packages: MATLAB, Mathematica, Ansys, COMSOL, LabVIEW, etc. available on the CSC webpage.

The center maintains local repositories of several popular open-source and commercial licensed software.

The CSC has configured moodle a public domain course management software, for use by faculty and students for the courses running during the semester.

IIT Delhi is also a part of Eduroam, a global WIFI roaming programme across academic campuses through ERNET India.

Own Cloud/Next Cloud, a file and document sharing utility similar to the popular drop box is also provided for user community. The utility supports storing and sharing of files, images, music and documents, contacts, calendars, tasks etc.

To facilitate downloads of data files through non-standard ports, download Server: download.iitd.ac.in can be used and to facilitate download of huge data for Research, proxy server xen03.iitd.ac.in (Research proxy) can be used. The faculty has been authorized to provide download permissions to their students from the webpage.

Virtual web hosting facility can be used for securely hosting all websites of the form http://xyz.iitd.ernet.in which are not maintained by CSC. In addition, CSC maintains large number of websites including IITD main website and some departmental websites.

User web pages is available for the use of faculty and Ph.D. students for hoisting their web-pages on the server web.iitd.ac.in.

To provide Internet access to the visitors, the faculty and officers have been authorized to create user account for their visiting faculty/students.

To facilitate limited access within IITD, CSC has a separate web server privateweb.iitd.ernet.in where users can have their personal web pages.

VPN facility is provided to the users for accessing IITD internal network from outside IIT Delhi. The faculty have been authorized to create cert-keys for their own use and their advisees from the VPN webpage on the CSC website.

Network Time Protocol (NTP) servers are synchronized with standard internet time servers with time drift less than a few milliseconds and can be used by all users.

MRTG and RRD Health Graphs have been provided to see the Status Reports of the various System activities/Services.

SLA ticketing system - SLA for Networking & SLA for Software have been provided for resolving User problems pertaining to Network and Software issues.
NATIONAL RESOURCE CENTRE FOR VALUE EDUCATION IN ENGINEERING
Prospectus 2021-22
IITD
Head of the Centre
Rahul Garg, Ph.D. (IIT Delhi)
Professor

Sneh Anand, Ph.D. (IIT Delhi)
Biomedical Engineering

Shubhendu Bhaisin, Ph.D. (Univ. of Florida)
Electrical Engineering

G. Bhuvaneswari, Ph.D. (IIT Madras)
Electrical Engineering

P.R. Bijwe, Ph.D. (IIT Delhi)
Electrical Engineering

Nomesh Bolia, Ph.D. (Univ. of North Carolina)
Mechanical Engineering

Niladri Chatterjee, Ph.D. (Univ. of London)
Mathematics

Harish Chaudhary, Ph.D. (IIT Delhi)
Management Studies

V.M. Chariar, Ph.D. (IIT Delhi)
CRDT

Devendra K. Dubey, Ph.D. (Purdue University)
Mechanical Engineering

Sangeeta Kohli, Ph.D. (IISc., Bangalore)
Mechanical Engineering

Amit Gupta, Ph.D. (Univ. of Central Florida)
Mechanical Engineering

S.K. Gupta, Ph.D. (IIT Delhi)
Chemical Engineering

Amit Kumar Jain, Ph.D. (IIT Guwahati)
Electrical Engineering

Manjeet Jassal, Ph.D. (IIT Delhi)
Textile and Fibre Engineering

Saroj Kaushik, Ph.D. (IIT Delhi)
Computer Science and Engineering

Jyoti Kumar, Ph.D. (IIT Delhi)
IDDC

Anushree Malik, Ph.D. (IIT Delhi)
CRDT

Samrat Mukhopadhyay, Ph.D. (IIT Delhi)
Textile and Fibre Engineering

Bhanu Nandan, Ph.D. (Kanpur Univ.)
Textile and Fibre Engineering

Rajesh Prasad, Ph.D. (Cambridge Univ.)
Applied Mechanics

Rajendra Prasad, Ph.D. (IIT Delhi)
CRDT

P.V. Madhusudan Rao, Ph.D. (IIT Kanpur)
Mechanical Engineering

M.R. Ravi, Ph.D. (IISc., Bangalore)
Mechanical Engineering

Anjan Ray, Ph.D. (Michigan State Univ.)
Mechanical Engineering

Jayshree Santosh, Ph.D. (IIT Delhi)
Computer Service Centre

Santosh Satya, Ph.D. (IIT Delhi)
CRDT

V.K. Vijay, Ph.D. (IIT Delhi)
CRDT

Kiran Seth, Ph.D. (Columbia Univ.)
Mechanical Engineering

Kamlesh Singh, Ph.D. (Univ. of Rajasthan)
Humanities & Social Sciences

Parag Singla, Ph.D. (Washington Seattle Univ.)
Computer Science and Engineering

D. Sundar, Ph.D. (Pondicherry Univ.)
Biochemical and Biomedical Engineering

Rajiv K. Srivastava, Ph.D. (KTH, Sweden)
Textile and Fibre Engineering

S.K. Saha, Ph.D. (McGill Univ.)
Mechanical Engineering

Kiran Seth, Ph.D. (Columbia Univ.)
Mechanical Engineering
INTRODUCTION

National Resource Centre for Value Education in Engineering (NRCVEE) was setup in 2001. The role of the Centre is to create awareness in the technical community about human values. Accordingly, the mandate of NRCVEE is to identify, develop and disseminate techniques by which engineering students and practicing engineers can be motivated to imbibe human values and appreciate their impact on technology development, professional ethics and human welfare.

ACADEMIC PROGRAMMES

The Centre offers elective courses for UG and PG students. The Centre runs a Ph.D. programme to support interdisciplinary research on topics that pertain to the impact of science and technology on human values and professional ethics and vice-versa. The Centre also provides a platform for faculty from across the institute to engage with students through projects, courses and other activities so as to develop better understanding of issues related to human values and technology. The Centre acts as a catalyst in the activity of sensitizing the campus community at large to these issues through lectures by eminent personalities. It also organizes several workshops on meditation, self-enquiry and the like for students and other campus residents.

RESEARCH AREAS

The Centre supports research primarily through its Ph.D. program in the following areas:

- **Holistic Health and Wellness**: All issues pertaining to holistic view of individual’s health and wellness. These include modern scientific research on proven mind-body techniques for physical and mental health, such as Mindfulness, Yoga, Tai-Chi, Qi-Gong, Ayurveda, Holistic nutrition and others. Yogic Neuroscience, Indian Psychology, Cognitive Sciences, Clinical trials on Yoga and Ayurveda, fMRI-based Neuroimaging (fMRI), EEG, MEG, PET, fNIRS.

- **Leadership for Sustainable Development**: Various aspects of holistic and sustainable development. Notions of development which go beyond purely material well-being, and consider other aspects of human/societal well-being such as intellectual, emotional and overall happiness. Notions of development which encompass sustained co-existence among human-beings as well as with nature. How to create leadership (in various walks of life - especially in engineering/technology) for taking forward these alternate views on development.

- **Inner Development**: Understanding first person mental phenomena, especially those pertaining to Meditation, Mindfulness and Contemplation in a rigorous academic framework. Theoretical frameworks for alternative worldview based on deep contemplative insights. Teaching and research on first person mental phenomena through accurate and reproducible observations.

- **Value Education and Technology:** Teaching the teachers, tools and techniques for inculcating value education to students, especially at tertiary level of science and engineering. Research on effectiveness of various techniques for value education. Newer models of education. Use of technology for large scale dissemination of knowledge.

FACILITIES

The Centre has a unique collection of books and audio-visual material on topics pertaining to science, spirituality, human values and ethics. It also has a meditation room that can accommodate 30 people and is open to students and all campus residents.
OPTICS AND PHOTONICS CENTRE
Joby Joseph, Ph.D. (IIT Delhi)
Professor

Kedar B. Khare, Ph.D. (Univ. Rochester)
Associate Professor
Computational Imaging, Inverse Problems, Compressive Sensing, Light Propagation in Random Media.

P. Senthilkumaran, Ph.D. (IIT Madras)
Professor

Dalip Singh Mehta, Ph.D. (NPL Delhi/CCS Univ. Meerut)
Professor

Vishal K. Vaibhav, Ph.D. (Max Plank Institute, Germany)
Assistant Professor
Non-linear Optics, Computational Physics, Numerical Analysis of PDEs.

Anurag Sharma, Ph.D. (IIT Delhi)
Emeritus Professor

Head of the Centre
INTRODUCTION

Optics and Photonics Centre has been created recently at IIT Delhi, with a vision to establish an academic unit of eminence, dedicated to innovations in teaching, research and technology development in the area of Optics and Photonics. Its mission is to develop into a globally-competitive ‘look-up-to’ Centre in India for all areas in Optics and Photonics, from fundamentals to cutting-edge research & innovation, for teaching, training, certification, product development and entrepreneurship.

The Centre will undertake research, development and innovation, and manpower training in all areas of Optics and Photonics, keeping a balance between classical and modern areas. The Centre will collaborate with government establishments and industry to undertake R&D in the areas of importance for them. The Centre aims to synergize and significantly enhance the activities in Optics and Photonics at the institute, particularly in view of the strong interdisciplinary nature of the subject. The Centre would pursue innovations in traditional areas such as optical engineering, instrumentation, and laser technology as well as modern areas at the cutting edge of R&D such as ultrafast optics, silicon photonics, nanophotonics, biophotonics, quantum photonics and terahertz photonics. The Centre will be working in collaboration with a number of faculty members from other academic units such as Physics, Electrical Engineering, and SeNSE.

ACADEMIC PROGRAMMES

The Centre will have primarily Ph.D. Research and M.Tech. and M.S. (Research) Programmes.

i. Ph.D. Programme: Ph.D. programme that caters to both fundamental and applied research, with emphasis given to interdisciplinary nature of the subject. Students with varied background such as physics, engineering and biological sciences would be trained in relevant areas.

ii. M.Tech. and M.S.(R) Programmes are being planned and are likely to be introduced from the next academic year.

RESEARCH AREAS

The Centre is currently focusing on the following five research theme areas, with further details as:

- **Lasers & Guided Wave Optics:** Lasers, High Power Lasers and laser optics, Laser Systems and Applications in Medicine, Defence, Communications (including VLC), and Manufacturing, Guided wave optics, Fiber optics and Optical communication, Integrated optics, Fiber lasers and amplifiers, specialty fibers and sources.

- **Optical Engineering:** Geometric optics, Optical design, testing and fabrication, Micro-optics, Large-size Optics, Optical Instrumentation, measurement, and metrology, Optical devices and sensors. Illumination Engineering, Lighting and optical sources and radiation measurement (photometry, colorimetry and radiometry), Adaptive
Optics, Free-space optics, Physical and Statistical optics, Wave propagation, Singular optics, Polarization optics, Diffractive and micro-optics, freeform optics, Atmospheric, oceanic and space optics, Scattering, Remote sensing (LIDAR) and sensors.

- **Imaging, Sensing and Biophotonics:** Fourier optics and optical signal processing, Holography, Image processing, Machine vision, Optical data storage, Computational Imaging and Sensing, Imaging systems, Microscopy, Augmented Reality (AR)/Virtual Reality (VR) & Mixed Reality (MR)- 3D display, vision and communication technology, Bio-medical optics and biophotonics, Vision, color, and visual optics, Nanoscopy for biological samples, Biosensors.

- **Nanophotonics:** Nano-photonics, Plasmonics, Photonic Metamaterials, Photonic crystals, Optics at surfaces, Micro-/Nano-Optics, OE-MEMS, Optical Materials, Detectors, Optoelectronics, Liquid crystal photonics, Spectroscopy, Polymer Photonics, Green Photonics, Silicon photonics, solar cell optics, sunlight harvesting.

- **Ultrafast and Quantum Optics:** Nonlinear optics and applications, Terahertz optics and photonics, IR & Mid-IR Optics, Ultrafast optics, Extreme Optics, Atomic and molecular physics, Quantum Integrated Photonics, Quantum Information, Quantum Technologies.

LABORATORY FACILITIES

The Centre will establish well-equipped state-of-the art laboratory facilities for teaching and research in Optics and Photonics. Current research laboratories are:

Photonics Research Laboratory:
The Photonics Research Laboratory lead by Professor Joby Joseph is currently involved in research and developmental activities in areas such as: phase controlled 3-D interference lithography for fabrication of large area photonic structures, studies on photonic resonant structures for biosensing and other applications, Design and fabrication of photonic metamaterials and metasurfaces, Super resolution optical imaging using structured illumination, Shock-wave analysis using Schlieren and shadowgraphy techniques etc. Experimental facilities available include: 1D, 2D, 3D Interference Lithography setup, JEOL Tabletop SEM, Femtofiber laser, He-Cd Laser 325 nm and 442 nm, Coherent Genesis laser 355nm, Toptica blue mode laser 405 nm, He-Ne laser 632.8nm, Cobolt samba lasers 532 nm, Holoeye Spatial Light Modulators, UV-VIS spectrometer, Spin Coater, Hot plates, Digital Balance, Centrifuge systems, Box furnace, 3D Printers etc.

Computational Imaging Laboratory:

The Computational Imaging Laboratory headed by Prof. Kedar Khare works on novel imaging concepts that use optical design and advanced reconstruction algorithms to realize unprecedented imaging performance beating traditional limits in terms of resolution, accuracy, imaging speed, field-of-view, etc. A number of successes over the last several years include system concepts based on our optical phase reconstruction and phase engineering algorithms that allow imaging with “incomplete” data. Collaborative work with other departments at IIT Delhi including CBME and KSBS has also yielded number of novel results with important system implications. A high resolution phase microscope product has recently been introduced commercially through our efforts – the first full-fledged unit is now installed in IIT Delhi’s Central Research Facility (CRF) for generic use. The microscope provides full-resolution holographic 3D images of live cells and has number of applications in basic bio-sciences as well as diagnostics.
Singular Optics Laboratory:

The Singular Optics Laboratory lead by Professor P. Senthilkumaran is active in Physical Optics research. Current research activities are in the areas of phase and polarization singularities, correlation optics, interferometry, diffractive optics, polarization optics and topological aspects of light fields. The group is also actively engaged in the design and fabrication of elements for laser beam shaping, spectral beam combining and structured beam generation. It is also involved in non-destructive optical testing and metrology. In collaboration with various other labs this group also carries out research in statistical optics, beam propagation, imaging, photonic crystals and in bio-medical optics. Some of the experimental facilities available in this laboratory are: all type of interferometers, Stokes camera, He-Ne lasers, various diode lasers in the 1030-1100nm wavelength range, spatial light modulators, spiral phase plates and q-plates, laser beam profilers and Arcoptic tunable phase retarders.

Bio-Photonics and Green Photonics Laboratory:

Bio-photonics and Green Photonics Laboratory is headed by Professor Dalip Singh Mehta. The group has been working in the areas of Bio-photonics, in particular Optical Coherence Tomography (OCT), Optical Tweezers and Applications, Quantitative Phase Microscopy (QPM), and multi-modal, multispectral point-of-care common cancer diagnostic devices in real time. The group has demonstrated several important biomedical applications in collaboration with AIIMS Hospital, New Delhi and University of Tromso, Norway. One of the important finding on research on QPM using partially spatially coherent light is an order of magnitude higher phase sensitivity compared to coherent light and they have also demonstrated OCT using longitudinal spatial coherence rather than low temporal coherent light which is a paradigm shift in OCT technology. The group has conventional OCT system, full-field OCT system, white light interferometric surface profilers, micro-endoscopic system and phase nanoscopic system in the lab. All these equipments are developed in the Bio-photonics laboratory by the Ph.D. and Master students.
Another area of research and development being carried out in this Laboratory is Green Photonics, in particular Laser based Solid State Lighting, Sun light harvesting for day light saving and luminescent Solar concentrators. Green photonics is the study and development of applied photonic/optical systems for generating clean and renewable energy and utilize it efficiently. It is basically the use of photonics technologies that can generate or conserve energy, no greenhouse gas emissions, zero pollution, or yield environmentally sustainable outputs. There is a roof top Sunlight harvesting facility with large size solar concentrators, solar thermals, fiber optic cables and light guide. It is planned to utilize Sunlight for illumination inside rooms, efficient power generation and water heating. In future, it is planned to extend the work on visible light communication and under water communications using lasers.

Apart from above, there is ongoing work on Optical Metrology: Optical interferometry, 3D-surface profilometry/3D-shape measurement technique. In future, it is planned to extend this work to quantum optical metrology.

Computational Photonics Group
Computational Photonics Group focuses on developing computational methods for waveguide modelling and wave propagation. These methods are used for device modelling. In the past, variational methods for modes of optical fibers and integrated optical waveguides have been developed. Also developed were the methods for ray
tracing in gradient-index (GRIN) optical systems. Recent focus has been on modelling of microstructured fibers (MoF) and fiber Bragg gratings (FBG). Another device that has been a subject of study is photonic lantern for which new and simple propagation method has been developed. Using this method a protocol for optimization of photonic lanterns has been developed. Currently, methods are being developed for propagation of higher order modes in few mode optical fibers and for optical angular momentum (OAM) modes. Another area that is of current focus is the development of methods for non-paraxial and bidirectional vector wave propagation which will be useful for modelling silicon photonic devices.

Efforts are also underway in generalizing the conventional Fourier transform to integrable nonlinear systems. The resulting transform is known as the nonlinear Fourier transforms (NFT) which has found application in optical communication. It is also an important tool for design and characterization of fiber Bragg gratings and grating assisted co-directional couplers for various communication and sensing applications. The group has demonstrated a family of Cooley-Tukey type Fast NFT algorithms for encoding and decoding information carried by optical signals in single mode fibers in the nonlinear regime of operation.
CENTRE FOR RURAL DEVELOPMENT AND TECHNOLOGY
Anushree Malik, Ph.D. (IIT Delhi)
Professor

Ram Chandra, Ph.D. (IIT Delhi)
Assistant Professor
Anaerobic Digestion of Various Biomass and Waste.

Vivek Kumar, Ph.D. (IIT Delhi)
Professor

Vijayaraghavan M. Chariar, Ph.D. (IIT Delhi)
Professor
Ecological Sanitation, Design for Sustainability, Traditional Knowledge Systems.

Hariprasad P., Ph.D. (Univ. of Mysore)
Associate Professor
Environmental Biology and Biotechnology, Applied Secondary Metabolites

Jatindra K. Sahu, Ph.D. (IIT Kharagpur)
Associate Professor
Food Engineering, Green Extraction & Encapsulation, Food Tribology, Food Safety & Quality.

Kavya Dashora, Ph.D. (CAZRI, Jodhpur)
Associate Professor
Biosensors, Non-chemical Pest Management, Agricultural Technologies, Panchgavya.

Ajay Saini, Ph.D. (TISS, Mumbai)
Assistant Professor
Governmentality Studies, Rural Development, Isolated Indigenous Communities, Northeast India, Andaman and Nicobar Islands.

Pooja Ghosh
Assistant Professor
Solid Waste Management, Bioenergy, Bioremediation, Environmental Toxicology.

Satyawati Sharma, Ph.D. (IIT Delhi)
Professor
Biomass Utilization and Mushroom Cultivation Technology.

Priyanka Kaushal, Ph.D. (TU Wien Vienna)
Associate Professor
V.K. Vijay, Ph.D. (IIT Delhi)
Professor

S.N. Naik, Ph.D. (IIT Delhi)
Emeritus Professor
Biofuels, Oils, Fats and Waxes Technology, Extraction of Natural Products & Value Addition of NTFPs.

Santosh Satya, Ph.D. (IIT Delhi)
Emeritus Professor
Holistic Health, Food Safety and Quality.

Sunil K. Khare, Ph.D. (IIT Delhi)
Joint Faculty
Microbial Screening & Molecular Biology. *Department of Chemistry*

Kamal K. Pant, Ph.D. (IIT Kanpur)
Joint Faculty
Green Technologies for Sustainable Energy & Environment. *Department of Chemical Engineering*

Vijay P. Bhatkar, Ph.D. (IIT Delhi)
Honorary Professor
Computer Science and ICT, Rural Development.

Rajendra Prasad, Ph.D. (IIT Delhi)
Honorary Professor
Biomass Cookstoves.

Vinod Kumar, Ph.D. (IIT Delhi)
Adjunct Faculty
Centre for Climate and Environmental Protection, Cranfield University, UK

Ashutosh Murkute
Adjunct Faculty
Principal Scientist ICAR-Central Citrus Research Institute Organic Food Production Certification, Entrepreneur Development.

Priti Parekh, Ph.D. (University of Cambridge)
Adjunct Faculty
Department of Civil, Environment & Geomatic Engg., University College of London, UK

Gowtham HG, Ph.D. (University of Mysore)
IITD - PDF

Nitya Sharma, Ph.D. (BHU)
IITD - PDF

Megha Mathur, Ph.D. (IIS University)
IITD - PDF
INTRODUCTION

The Centre for Rural Development and Technology (CRDT) was established to coordinate and provide inputs for scientific and technological advancements in the rural sector by giving technical back-up for the sustainable rural development.

The guiding mission of CRDT is to sensitize the students towards the pressing societal needs and developing solutions for the same. Special emphasis is on sustainable utilization of resources and close loop recycling technologies. The centre aims to generate a sustainable technology base through synergy of modern S&T interventions and Traditional Knowledge. The centre undertakes appropriate teaching, research, technology dissemination and outreach related activities, and network with other technical institutions, grass root organizations, government agencies, and rural industries, for improving living conditions and generating livelihood.

ACADEMIC PROGRAMMES

UNDERGRADUATE

The Centre offers many elective courses to undergraduate students.

POSTGRADUATE

The Centre offers twenty-nine courses with strong lab or field component to postgraduate students as electives. Our basket of academic courses is designed to provide wide range of courses spanning over Rural Resources, Governance, Traditional and Emerging Technologies and Natural Product Development.

Ph.D.

CRDT has a pool of over 121 research scholars working on diverse aspects of rural development and technology. Scholars are rigorously trained in subject/research and evaluated on a continuous basis to carve future leaders in variety of professions such as academia, industry, developmental organizations, entrepreneurship or think tanks.

RESEARCH AREAS

The main research areas of the centre are:

- **Rural Resources, Energy & Environment**: Rural energy systems, biogas production, enrichment and bottling, algal biofuels/biorefinery, biodiesel, biomass gasifiers, biomass cookstoves, engine conversion kits, pico hydel systems, environment and climate change, monitoring, bioremediation and detoxification of environmental contaminants, Solid-liquid waste treatment & valorization, life cycle assessment, etc.

- **Local Governance, Social Systems & Grassroot Innovations**: Rural Infrastructure, Design for sustainability, green product development, Traditional Knowledge & Values, Ecological sanitation and nutrients recovery,
Rural Development and Governance, culture and indigenous people, Agri/artisanal tools and livelihoods, Rural Planning and Entrepreneurship Development, etc.

- **Microbio, Nano & Biomass Technologies in Rural Settings**: Sustainable biomass production, conversion and utilization, rapid composting & biomanures, bioinoculants and biopesticides, applied secondary metabolites, environmental biotechnology, bio-economy and panchgavya, nanotechnology, blockchain technology in agriculture, etc.

- **Food, Health and Nutrition**: Green extraction, encapsulation and value addition of bioactive, 3-D food printing, food tribology, sustainable food production systems, food quality and safety, bioformulations for stored food products, value addition of non-timber forest, Medicinal and nutraceutical mushrooms, medicinal and aromatic plants and herbs, post-harvest technology, agro-waste management.

CRDT has successfully completed and demonstrated several extramural sponsored R&D projects and industrial consultancies funded by various national and international agencies. Currently, large number of research projects and extension activities are undertaken by our faculty, funded by various Government and Private funding agencies. Besides CRDT has a strong presence on International platforms through sustained bilateral/multilateral international collaborations. In the last five years, CRDT has to its credit over 306 high impact journal publications, 13 books, 28 patents and 3 start-ups.

CRDT also uses the social entrepreneurship route as a mechanism for creating impact in several areas. The Centre regularly offers Short-Term Courses as well as Training Programmes for both national and international participants with background in community development, research, policy making, entrepreneurship and governance. CRDT plays a lead role in coordinating pan-India initiatives such as the Unnat Bharat Abhiyan (UBA). UBA, a flagship programme of Ministry of the Human Resource Development, aims to bring a transformational change in rural development by active participation of higher academic institutions with local communities, and reorientation of academic curricula and R&D design of knowledge institutions in the country. The wide network originating from such efforts provides CRDT a unique platform for consultation and dissemination.

LABORATORY FACILITIES

The Centre has established need based academic and core research labs equipped with some state-of-the-art research equipment. The Centre has a privilege of 7 acres of open land space inside IIT Delhi campus (Mahatma Gandhi Gramodaya Parisar) to enable the pilot testing of technologies before making tangible contributions on land.

The major research laboratories are:

- Applied Microbiology Lab
- Agro Ecology Lab
- Agro-Forest Products Processing Lab
- Applied Biomass Lab
• Agricultural Nano-biotechnology Lab
• Biogas Research Lab & Test Centre
• Biochemical Lab
• Cook-stove Lab
• Food and Bioprocess Engineering Lab
• Supercritical Fluid Extraction Lab

• Air Quality Lab
• Biomass Lab
• Biogas Enrichment and Bottling Lab
• Environmental Biotechnology Lab
• Frugal Innovation Lab
• Regional Testing and Knowledge Centre for Clean Cook-stoves
The text on the page appears to be promotional material for the Center for Sensors, Instrumentation, and Cyber-Physical Systems (SeNSE). It features a group photo of what looks like it could be students or professionals related to the center. The text and images suggest a focus on engineering and technology, with various icons and illustrations related to sensors, instrumentation, and cyber-physical systems.
Subrat Kar, Ph.D. (IISc., Bangalore)
Professor

Satish Kumar Dubey, Ph.D. (IIT Delhi)
Assistant Professor

Gufran Sayeed Khan, Ph.D. (University of Erlangen-Nuremberg, Germany)
Associate Professor

Jasleen Lugani, Ph.D. (IIT Delhi)
Assistant Professor

Ravibabu Mulavesala, Ph.D. (IIT Delhi)
Associate Professor

Chandra Shakher, Ph.D. (IIT Madras)
Honorary Professor

D.T. Shahani, Ph.D. (IIT Delhi)
Honorary Professor
Electronic Instrumentation, Electro-magnetics, Antennas.

I.P. Singh, Ph.D.
Visiting Faculty
Mechanical Instrumentation, Microprocessor Application.

A.L. Vyas, Ph.D. (IIT Delhi)
Visiting Faculty
Electronic and Ultrasonic Instrumentation, Signal Processing, Sonar Systems, Transducer Design.

JOINT FACULTY
Joby Joseph, Ph.D. (IIT Delhi)
Sunil Kumar, Ph.D. (IISc., Bangalore)
Dalip Singh Mehta, Ph.D. (NPL Delhi/CCS Univ. Meerut)
Mashuq-un-Nabi, Ph.D. (IIT Bombay)

GUEST FACULTY
Rana Pratap Sircar, (Head of Innovation & Technology, Dig, SVCS Ericsson Global India)
INTRODUCTION

The Centre for Sensors, Instrumentation and Cyber-physical System Engineering (SeNSE) - formerly known as Instrument Design Development Centre (IDDC), is an interdisciplinary unit. It offers a M.Tech. course in Instrument Technology and Ph.D. in specialized research areas combining multiple disciplines–microelectronics, optics, electronic and photonic circuits, mechanical engineering and quantum optics to design and develop complete systems. In keeping with modern trends, industrial/societal expectations vis-a-vis the national goals, two more research areas - Sensors Technology and Cyber Physical Systems - have been included in its theme and the centre has been renamed as SeNSE. The Centre has made significant contribution through various sponsored R&D projects in developing Sensors/Systems for defense, medical and industry. It aims to achieve the national goals and foster excellence in state-of-the-art technologies. After it’s restructuring, SeNSE has six core areas of focus - optical engineering, electronic system design, advanced optical fabrication, micro-opto-electro-mechanical systems, sensor technology and cyber-physical systems- across three application domains - defense, medical and industrial applications.

ACADEMIC PROGRAMMES

Interdisciplinary M.Tech. in Instrument Technology

This is an interdisciplinary M.Tech. program, aimed to develop and train the manpower for the industrial needs requiring the knowledge and skills in different disciplines of science and engineering. The Center admits the students from various streams i.e. Electronics/Electrical/Electronics & Communication/Instrumentation, Mechanical engineering and Physics. Apart from theory courses, students also undergo rigorous laboratory courses as part of the hands on training program. This helps them contribute towards sponsored R&D activities via their Masters projects.
RESEARCH AREAS

- **Optical Engineering and optical instrumentation systems**: Optical 3D imaging with emphasis on biomedical application, optical metrology, design and development of opto-electronic/electro-optic sensors, NDT technology, quantum optical devices and quantum technologies.
- **Precision Mechanics**: Precision optical and mechanical fabrication, Mechatronics, Microfluidics, Composite and nanomaterials.
- **Biomedical Instrumentation**: NIR and IR imaging for biomedical application, wearable sensors for health monitoring, design of point of care diagnostic devices.
- **Electronic systems, Instrumentation and Sensors (Integration)**: Design of electronic systems, Industrial quality control, signal and image processing, non-destructive testing, Instrumentation and Control.
- **Microelectronics/MOEMS/Sensors Fab**: MEMS/MOEMS based devices and their integration for sensing, design of microelectronic devices.
- **Cyber-physical systems**: Machine Learning and Artificial Intelligence applied to health applications/public health, genetics and biological networks, energy autonomous IoTs, resilient IoT and security of the Internet of Things.

LABORATORY FACILITIES

- **CAD and Simulation Lab**: Equipped with state of the art machines with CAD and Simulation software to design and simulate various prototypes.
- **Manpower Development in Instrument Technology (MDIT) Lab**: Equipped with best facilities in electronics design and instrumentation.
- **Advanced Instrumentation Lab**: Equipped with complete range of instruments to carry out DSP based system design.
- **Laser Application and Holography Lab**: Equipped with state of the art facility to develop the sensors and Laser based instruments for industrial and medical applications.
- **Optical Metrology Lab**: Works in opto-electronic and opto-mechanical area for precision measurement and monitoring systems.
- **Optical Workshop**: Equipped with fabrication machines and metrology tools for the production of optical elements such as mirrors, retroreflectors, lenses, parabolic optics, prisms and many other components.
Geetam Tiwari, Ph.D. (Uni. of Illinois, Chicago)
Professor
Transportation Planning: Expertise in transportation planning and travel analysis, traffic safety and safety of vulnerable road users, public transport planning, pedestrian and bicycle infrastructure planning, highway safety and road safety audits.

Anoop Chawla, Ph.D. (IIT Kanpur)
Professor
Department of Mechanical Engineering

N. Chatterjee, Ph.D. (London University)
Professor
Department of Mathematics
Statistical Modelling, Big Data Analysis.

K.N. Jha, Ph.D. (IIT Delhi)
Professor
Department of Civil Engineering
Construction Technology and Management.

Ravinder Kaur, Ph.D. (Delhi University)
Professor
Department of Humanities and Social Sciences
Sociology of Kinship, Marriage and Family, Urban Social Anthropology, Migration Studies, Gender Studies, Demographic Anthropology, Sociology of India, Social Change.

Puneet Mahajan, Ph.D. (Montana)
Professor
Department of Applied Mechanics
Expertise in Dynamics and Vibrations. Currently involved in modelling vibrations of tractors and their effect on drivers, helmet impact modelling.

Sudipto Mukherjee, Ph.D. (OHIO State)
Professor
Department of Mechanical Engineering
Expertise in Turbulence, Fluid Mechanics, Non-Linear Mechanics and Chaos, Pollution Studies and Development of Educational Software.

Kalaga Ramachandra Rao, Ph.D. (IIT Kharagpur)
Professor
Department of Civil Engineering

Sanjeev Sanghi, Ph.D. (CUNY, New York)
Professor
Department of Applied Mechanics
Expertise in Turbulence, Fluid Mechanics, Non-Linear Mechanics and Chaos, Pollution Studies and Development of Educational Software.
ASSOCIATE FACULTY

A. Agrawal, Ph.D. (IGIDR, Mumbai)
Department of Humanities & Social Science

Aravind K. Swamy, Ph.D. (New Hampshire Univ.)
Department of Civil Engineering

Kaushik Mukherjee, Ph.D. (IIT Kharagpur)
Department of Mechanical Engineering

Manoj M., Ph.D. (IISc., Bangalore)
Department of Civil Engineering

Nezamuddin, Ph.D. (Univ. of Texas)
Department of Civil Engineering

Ravi Shankar, Ph.D. (IIT Delhi)
Department of Management Studies

Reetika Khera, Ph.D. (Delhi School of Economics)
Department of Humanities & Social Science

Rijurekha Sen, Ph.D. (IIT Bombay)
Department of Computer Science & Engineering

S. Banerjee, Ph.D. (IISc., Bangalore)
Department of Computer Science & Engineering

Sagnik Dey, Ph.D. (IIT Kanpur)
Centre for Atmospheric Sciences

Sourabh B. Paul, Ph.D. (Uni. of British Columbia)
Department of Humanities & Social Science

Vikram Singh, Ph.D. (Cornell)
Department of Chemical Engineering
INTRODUCTION
The Transportation Research and Injury Prevention Programme has been operational for two decades and has now been established as a Centre and renamed the TRIP-Centre. It is based at the Indian Institute of Technology (Delhi) and is an interdisciplinary academic unit focusing on the reduction of adverse health effects of road transport. TRIP-Centre attempts to integrate all issues concerned with transportation in order to promote safety, active mobility, cleaner air, and energy conservation. Faculty members are involved in planning safer urban and inter-city transportation systems, and developing designs for vehicles, safety equipment and infrastructure for the future. Activities include applied research projects, special courses and workshops, and supervision of student projects at postgraduate and undergraduate levels. The centre works closely with vehicle industry both nationally and internationally. The centre will also promote collaboration with construction (highway) industry and public transport agencies. TRIP Centre also organises short-term courses and workshops on road safety and transport issues regularly.

ACADEMIC PROGRAMMES
Ph.D. Programme: IITD-TRIPP (now known as TRIP Centre) has been running Ph.D. programme since May 2004. At present there are six institute fellowships allocated to TRIP Centre. Additional fellowship are available through industry/research project partnerships. The Ph.D. programme is administered as per the IIT Delhi current norms.

M.S. (Research): M.S. (Research) program will be offered by TRIP Centre as per the current norms of IIT Delhi in coming years.

RESEARCH AREAS
Transportation planning and traffic flow analysis for optimising mobility and minimising accidents and pollution; Vehicle crash modelling, road safety studies, safer vehicle and helmet design; Studies related to public transport, traffic management, road design and land use planning; epidemiology of factors associated with road traffic injuries, injury analysis and pre hospital care; Studies on vehicle technology and engines to minimise fuel consumption and pollution.

Thrust Areas
The broad areas of interest (indicative) are as follows.
1. Road planning and design interventions associated with traffic safety.
 a. Road safety studies in collaboration with Industry and government organizations
 b. Development of Intelligent Transport Systems including data analytics
2. Road user behaviour associated with traffic safety and sustainable transport systems
 a. Sustainable transport policies inclusive of environment and safety
 b. Development of modern innovative public transport systems for Indian metropolitan cities including electric mobility.
3. Safety aspects of new vehicle technology in mixed traffic
 Safety of autonomous vehicles, electric vehicles safer bus designs.
AMAR NATH AND SHASHI KHOSLA
SCHOOL OF INFORMATION TECHNOLOGY
Preeti Ranjan Panda, Ph.D. (University of California, Irvine)
Professor
Energy-efficient Embedded Systems - architectures and compilers, Cache Management, 3D and Non-volatile Memory Systems, VLSI Design Automation and Design Methodology.
Department of Computer Science & Engineering

Saurav Bansal, Ph.D. (Stanford Univ.)
Associate Professor (Microsoft Chair)
Programming Languages and Operating Systems.
Department of Computer Science & Engineering

Sanjiva Prasad, Ph.D. (Stony Brook Univ.)
Professor
Programming Languages and their Semantics; Concurrency Theory; Verification; Proof Theory; Mobile Computation; Formal Foundations of Networks, Including IoT and SDN; Security, Systems Biology, Health Care Computing.
Department of Computer Science & Engineering

Aaditeshwar Seth, Ph.D. (Univ. of Waterloo)
Associate Professor
Analysis and Presentation of Economic Data, Low-Cost Computer Networks and ICT Systems for Rural Areas, Participatory Information Sharing on Social Networks.
Department of Computer Science & Engineering

Anoop Chawla, Ph.D. (IIT Kanpur)
Department of Mechanical Engineering

Chetan Arora, Ph.D. (IIT Delhi)
Computer Vision and Machine Learning.
Department of Computer Science & Engineering

Harshan Jagadeesh, Ph.D. (IISc., Bangalore)
Department of Electrical Engineering

M. Balakrishnan, Ph.D. (IIT Delhi)
Department of Computer Science & Engineering

Mausam, Ph.D. (Washington, Seattle),
Department of Computer Science & Engineering

Maya Ramanath, Ph.D. (IISc., Bangalore)
Database Systems and Information Retrieval, Semantic Web Data Management, Knowledge Graph Construction and Applications.
Department of Computer Science & Engineering

Niladri Chatterjee, Ph.D. (University of London)
Soumitra Dutta Chair Professor of Artificial Intelligence Artificial Intelligence, Natural Language Processing, Machine Learning, Data Science, Statistical Modeling, Mathematical Reasoning.
Department of Mathematics
Prem Kumar Kalra, Ph.D. (EPFL, Switzerland)
Computer Graphics, 3D Animation.
Department of Computer Science & Engineering

P.V.M. Rao, Ph.D. (IIT Kanpur)
Product Design & Manufacturing, Computer Aided Design & Manufacturing, Design for Product Life-cycle, and Design of Medical & Assistive Devices.
Department of Design

Rahul Garg, Ph.D. (IIT Delhi)
Brain Imaging and Neuroscience of Yoga, Machine Learning and Big Data Analytics, IT for Society.
Department of Computer Science & Engineering

Rajyesh Kumar Sen, Ph.D. (IIT Bombay)
Mobile and Embedded Systems (Hardware Architecture, OS, Sensing, Efficient Processing, Security), Computational Sustainability.
Department of Computer Science & Engineering

Srikanta Bedathur, Ph.D. (IISc, Bangalore)
Data Management, Knowledge Discovery and Data Mining, Natural Language Processing.
Department of Computer Science & Engineering

Subodh Sharma, Ph.D. (University of Utah)
Formal Methods, Program Analysis, Concurrent Systems.
Department of Computer Science & Engineering

Sumeet Agarwal, D.Phil. (University of Oxford)
Department of Electrical Engineering

Vireshwar Kumar, Ph.D. (Virginia Polytechnic Institute and State University (Virginia Tech))
Department of Computer Science & Engineering

ADJUNCT AND VISITING FACULTY

Anupam Joshi, Ph.D. (Purdue University)
University of Maryland, Baltimore County, USA

Ashish Suri, M.Ch. Neurosurgery (AIIMS, Delhi)
Professor, Department of Neurosurgery, AIIMS, Delhi

B. Chandra (Ms.), Ph.D. (Delhi University)
Deep Learning, Machine Learning, Neuro Computing, Database Management, Data Mining Feature selection of Gene Expression and Crime Mining.

Mahesh Chowdhary, Ph.D. (The College of William and Mary, Williamsburg, Virginia)
Internet of Things, Advanced signal processing, MEMS, Sensor fusion.
Fellow and Director of Strategic Platforms and IoT Excellence Centre, STMicroelectronics, USA

Pawan Sinha, Ph.D. (Massachusetts Institute of Technology)
Vision and Computational Neuroscience.
Massachusetts Institute of Technology, Cambridge, USA

Manik Verma, D.Phil. in Engineering (University of Oxford)
Algorithms, Artificial Intelligence, Machine Learning, Computational Advertising and Computer Vision.
Microsoft Research India

A.K. Bhateja, Ph.D. (IIT Delhi)
Cryptology, Artificial Intelligence, Machine Learning, Biometrics, Algorithms.
Visiting Professor, SIT
INTRODUCTION

The Amar Nath and Shashi Khosla School of Information Technology was established with an endowment from the distinguished IIT Delhi alumnus, Vinod Khosla (B.Tech., EE 1976). The objective of the School is to foster inter-disciplinary, goal-oriented research, innovation and post-graduate education in Information Technology. The School undertakes research in several interdisciplinary areas where there is a significant application of Information Technologies. The School has its own supporting staff and students, and its own joint faculty but encourages the participation of faculty members and students from other departments who have an interest in novel applications of computing sciences and technologies.

ACADEMIC PROGRAMMES

POSTGRADUATE

The School offers Ph.D. and M.S. (Research) programmes in Information Technology.

The M.S. (Research) programme is a 2 year inter-disciplinary programme that admits students with various backgrounds. The school also develops and offers academic courses in a variety of application areas, for which interested students from diverse disciplines may enroll.

The School is also hosts the inter-disciplinary M.Tech. programme in Cybersecurity.

RESEARCH AREAS

Doctoral research is being carried out in:

LABORATORY FACILITIES

The School has its own building, which houses specialized laboratories for collaborative and funded research activities.

- Assistech Lab
- ICTD Lab
- Medical Applications of IT Lab
- Mobile & Machine to Machine Lab
JOINT FACULTY

Mausam, Ph.D. (Washington, Seattle)
Professor (Jai Gupta Chair)

Debanjan Bhowmik, Ph.D. (University of California Berkeley)
Assistant Professor
Spintronics-based neuromorphic computing/edge AI, quantum-computing-based AI.
Department of Electrical Engineering

Souvik Chakraborty, Ph.D. (IIT Roorkee)
Assistant Professor
Department of Applied Mechanics

Niladri Chatterjee, Ph.D. (University of London)
Professor
Artificial Intelligence, Natural Language Processing, Machine Learning, Data Science, Statistical Modeling, Mathematical Reasoning.
Department of Mathematics

Hariprasad Kodamana, Ph.D. (IIT Bombay)
Assistant Professor
Machine Learning, Graphs, Optimization, Anomaly Detection, AI for Manufacturing Systems.
Department of Chemical Engineering

N.M. Anoop Krishnan, Ph.D. (IISc., Bangalore)
Assistant Professor
Molecular Modeling and Simulation, Multiscale Simulations, Data-driven Modeling and Discovery of Materials, AI and ML for Materials.
Department of Civil Engineering

Sandeep Kumar, Ph.D. (IIT Kanpur)
Assistant Professor
Department of Applied Mechanics

Sitikantha Roy, Ph.D. (Utah State University)
Associate Professor
Department of Applied Mechanics
ASSOCIATED FACULTY

Manish Agarwal, Ph.D. (IIT Delhi)
High Performance Computing, Large Scale Molecular Simulations, Parallelization of Analysis Codes.
Computer Service Centre

Sumeet Agarwal, D.Phil. (Oxford Univ., U.K.)
Department of Electrical Engineering

Ankush Agrawal, Ph.D. (IGIDR, Mumbai)
Agricultural Economics, Economics of Education, Health Economics and Demography, and Human Development.
Department of Humanities & Social Sciences

Prathosh A.P., Ph.D. (IISc., Bangalore)
Vision and Image Processing Audio, Speech and Music Analytics and Learning (Deep Learning, Sequential Modelling, and Transfer Learning).
Department of Electrical Engineering

Chetan Arora, Ph.D. (IIT Delhi)
Computer Vision, Machine Learning.
Department of Computer Science & Engineering

Amitabha Bagchi, Ph.D. (Johns Hopkins Univ.)
Data Algorithmics and Analytics, Probability and Networks, Data Science.
Department of Computer Science & Engineering

Sorav Bansal, Ph.D. (Stanford Univ.)
Compiler Design and Optimization.
Department of Computer Science & Engineering

Srikanta Bedathur, Ph.D. (IISc., Bangalore)
Data Management, Knowledge Discovery and Data Mining, Information Retrieval.
Department of Computer Science & Engineering

Abhijnan Chakraborty, Ph.D. (EPFL, Switzerland)
Department of Computer Science & Engineering

Arpan Chattopadhyay, Ph.D. (IISc., Bangalore)
Department of Electrical Engineering

Arnob Ghosh, Ph.D. (University of Pennsylvania)
Game Theory, Stochastic Optimization, Resource Allocation, Network Economics, Smart City, Smart Grid, Multi-agent learning, Mechanism Design, Transportation Network.
Department of Mechanical Engineering

Nitya Nand Gosvami, Ph.D. (NUS, Singapore)
Department of Materials Science & Engineering

Agam Gupta, Ph.D. (FPM, IIM-C)
Sharing Economy, Platform Ecosystems, Organizational Ecology, Computational Social Science, and Networks.
Department of Management Studies

Ishaan Gupta, Ph.D. (EMBL & University of Heidelberg)
Biostatistics and Functional Genomics, RNA Biology, Aging, Neurodegeneration and Organ degeneration, Parasitology.
Department of Biochemical Engineering & Biotechnology

Jayadeva, D.Phil. (IIT Delhi)
Machine Learning, Neuromorphic Engineering, VLSI Design, Swarm Intelligence Optimization.
Department of Electrical Engineering

Arpan Kumar Kar, Ph.D. (XLRI)
Department of Management Studies

Amit Mehndiratta, D.Phil. (University of Oxford)
Quantitative Biomedical Imaging, Clinical Radiology, Rehabilitation of Stroke Patients.
Department of Biomedical Engineering

Aparna Mehra, D.Phil. in Engg. (University of Oxford)
Department of Mathematics

Rohan Paul, Ph.D. (University of Oxford)
Robotics and Artificial Intelligence, Learning, Estimation and Planning, Assistive Technologies.
Department of Computer Science & Engineering

Maya Ramanath, Ph.D. (IISc., Bangalore)
Database Systems and Information Retrieval, Semantic Web Data Management, Knowledge Graph Construction and Applications.
Department of Computer Science & Engineering

Manoj C. Ramteke, Ph.D. (IIT Kanpur)
Department of Chemical Engineering
Sayan Ranu, Ph.D. (Univ. of California, Santa Barbara)
Machine Learning for Graphs, Data Mining, Spatio-temporal data analytics, Bioinformatics
Department of Computer Science & Engineering

Smruti Ranjan Sarangi, Ph.D. (University of Illinois Urbana-Champaign)
Department of Computer Science and Engineering

Rijurekha Sen, Ph.D. (IIT Bombay)
Mobile and Embedded Systems (Hardware Architecture, OS, Sensing, Efficient Processing, Security), Computational Sustainability.
Department of Computer Science and Engineering

Shaurya Shriyam, Ph.D. (University of Southern California)
Data-Driven Optimization in Automation, Logistics and Healthcare; Complex Resource Distribution Networks, Multi-agent Planning and Reinforcement Learning.
Department of Computer Science and Engineering

Anup Singh, Ph.D. (IIT Kanpur)
Medical Imaging, Quantitative Mult-parametric MRI, ML Applications to Healthcare, Diagnosis, Treatment Planning & Monitoring of Cancer and Osteoarthritis.
Department of Biomedical Engineering

ADJUNCT FACULTY

Dinesh Garg (IBM Research), Ph.D (IISc, Bangalore)

Parag Singla, Ph.D. (University of Washington, Seattle)
Neuro Symbolic Reasoning, Probabilistic Graphical Models, Machine Learning, Artificial Intelligence.
Department of Computer Science and Engineering

Manan Suri, Ph.D. (INPG, France)
Non-volatile Memory, Neuromorphic & AI Hardware, Semiconductor Cyber Security.
Department of Electrical Engineering

D. Sundar, Ph.D. (Pondicherry Univ.)
Bioinformatics, Computational Genomics, Genome Engineering, Synthetic Biology.
Department of Biochemical and Biomedical Engineering

Ashwini Vaidya, Ph.D. (Univ. of Colorado, Boulder)
Event Structures in Language, Multilingual Lexical Resources, Computational and Cognitive Models of Language.
Department of Humanities & Social Sciences

Manik Varma (Microsoft Research), D. Phil. (Univ. of Oxford)
Machine Learning, Computer Vision, Extreme Classification.
INTRODUCTION

Indian Institute of Technology (IIT) Delhi has established ‘School of Artificial Intelligence (ScAI)’ on its campus in September 2020 to strengthen education and research in AI, Machine Learning and Data Science. IIT Delhi is already one of the leaders in the country for research and educational activity in this broad area of artificial intelligence. The goal of ScAI is to strengthen education and research in AI, Machine Learning and Data Science, and to enable societal and commercial applications. ScAI has already brought together various IIT Delhi faculty members individually invested in different aspects of the field, including (1) fundamental areas of AI, such as deep learning and data science, (2) bridge areas, which connect the fundamental techniques to specific domains based on the nature of data such as natural language processing and computer vision, (3) application areas that apply AI techniques to specific domains such as healthcare and transportation, and (4) policy and societal aspects pertaining to the widespread application and ethical adoption of AI.

ACADEMIC PROGRAMMES

The School started its Ph.D. programme early this year. This will be followed by M.Tech. and M.S. (Research) programmes in Machine Intelligence & Data Science (MINDS). The final approvals are awaited for these programmes, and they are expected to start next year. The school is also planning to start a dual degree M.Tech. (Advanced Standing) in MINDS for IIT Delhi’s undergraduate students. ScAI also envisions starting an Executive programme taught primarily via evening and weekend classes. This programme will cater to the growing global demand by training industry and government professionals in modern AI techniques, thus enriching country’s AI ecosystem. A key aspect of ScAI’s programs is that they are open to all students irrespective of their undergraduate discipline.

RESEARCH AREAS

The research goals of ScAI are not only to create new knowledge, but also to seed start-ups and products that will have a long-lasting economic impact on the nation. The school will have a four-fold research agenda focusing on fundamentals of AI, bridge areas such as computer vision and natural language processing, areas allied with AI such as policy, ethics, and cognitive science, and will have a strong focus on applications of AI to domains such as healthcare, manufacturing, and intelligent robotics. Some exemplar areas of research are as follows:

CORE & BRIDGE AI RESEARCH

- Deep Learning
- Reinforcement Learning
- Data Mining
• Probabilistic Graphical Models
• Information Retrieval, Knowledge Graphs
• Computer Vision
• Natural Language Processing
• Responsible AI

APPLIED AI RESEARCH

• Healthcare
• Manufacturing Process Optimization
• Social Media
• Transportation
• Materials Discovery
• Robotics & Physical AI
• Law Enforcement & Judicial Systems
• IoT & Hardware

LABORATORY FACILITIES

The institute has allocated over 10,000 sq. ft. of space to School of AI, in which four computational laboratories are being constructed for PhD, Masters and undergraduate students working on ScAI projects, which are expected to be completed by early 2022. One AI-specific high performance supercomputer facility is also expected to be functional by mid year, 2022. This cluster will comprise a large number of GPU-heavy machines for training deep neural models and performing GPU-bound simulations. This will be in addition to the institute-wide generic high-compute cluster that already exists on campus. In the medium term, ScAI expects to invest in more robotic and sensor equipment and develop labs for these research areas.
BHARTI SCHOOL OF TELECOMMUNICATION TECHNOLOGY AND MANAGEMENT
Associated from Electrical Engineering Dept.
Manav Bhatnagar, Ph.D. (Oslo University)
Ranjan Bose, Ph.D. (University of Pennsylvania)
Shouribrata Chatterjee, Ph.D. (Columbia University)
Arpan Chattopadhyay, Ph.D. (IISc., Bangalore)
Santanu Chaudhury, Ph.D. (IIT Kharagpur)
Amol Choudhary, Ph.D. (Univ. of Southampton, UK)
Abhishek Dixit, Ph.D. (Ghent University, Belgium)
Subrat Kar, Ph.D. (IISc., Bangalore)
Sandeep Kumar, Ph.D. (IIT Kanpur)
Lalan Kumar, Ph.D. (IIT, Kanpur)
Harshan Jagadeesha, Ph.D. (IISc., Bangalore)
Jayadeva, Ph.D. (IIT Delhi)
S.D. Joshi, Ph.D. (IIT Delhi)
Brejesh Lall, Ph.D. (IIT Delhi)
Ranjan K. Mallik, Ph.D. (Univ. of Southern California)
Sukumar Mishra, Ph.D. (Sambalpur University)
Saif K. Mohammed, Ph.D. (IISc., Bangalore)
B.K. Panigrahi, Ph.D. (Sambalpur University)
Prathosh A.P., Ph.D. (IISc., Bangalore)
Seshan Srirangarajan, Ph.D. (University of Minnesota, USA)
Vivek Venkataraman, Ph.D. (Cornell Univ.)

Associated from Mathematics Dept.
S. Dharmaraja, Ph.D. (IIT Madras)

Associated from Mechanical Engineering Dept.
Arnob Ghosh, Ph.D. (University of Pennsylvania)

Associated from CARE
Arun Kumar, Ph.D. (TIFR, Bombay)
Monika Aggarwal, Ph.D. (IIT Delhi)
Ananjan Basu, Ph.D. (University of California)

Associated from Management Studies Dept.
Seema Sharma, Ph.D. (IIT Delhi)
Harish Chaudhary, Ph.D. (IIT Delhi)
Arpan Kumar Kar, Ph.D. (XLRI)
P. Vigneswara Ilaarasen, Ph.D. (IIT Kanpur)
Mahim Sagar, Ph.D. (IIITM, Gwalior)
Ravi Shankar, Ph.D. (IIT Delhi)

Adjunct Faculty
Sk. Subidh Ali, Ph.D. (IIT Kharagpur)
Vimal Bhatia, Ph.D. (University of Edinburgh, UK)
Arzad Alam Kherani, Ph.D. (IISc. Bangalore)
Dilip Krishnaswamy, Ph.D. (University of Illinois)
Aashish Mathur, Ph.D. (IIT Delhi)
Soumava Mukherjee, Ph.D. (IIT Kanpur)
Dhiman Saha, Ph.D. (IIT Kharagpur)
Arun K. Singh, Ph.D. (Telecom ParisTech, France)
Anand Srivastava, Ph.D. (IIT Delhi)
INTRODUCTION

The Bharti School of Telecommunication Technology and Management (BSTTM) functions jointly with the Departments of Electrical Engineering, Computer Science & Engineering, Mechanical Engineering, CARE, Mathematics and Management Studies.

The Bharti School was set-up in the year 2000 through a grant from Bharti Enterprises with the following objectives:

• To be a centre of excellence for education and research relating to all facets of Telecommunication Technology and Management.

• To host state-of-the art laboratories and infrastructures, and a research environment so as to attract the best faculty and students.

• To invite and encourage the best talent in telecommunications to be a part of the activities of the School.

• To run graduate academic programmes (including M.S, M.Tech., MBA, Ph.D.) in collaboration with the various Departments and Centres at IIT Delhi.

• To run continuing education programmes for personnel of the Telecom Industry.

ACADEMIC PROGRAMMES

The school offers the following postgraduate programmes:

Master of Technology (JTM)

The M.Tech. (Telecom Technology and Management) programme is of 2 years (4 semester) duration. It is a full-time programme with classes during the normal working hours. Part-time and Sponsored M.Tech. is also there, but at present there are no students under this programme.

Master of Science (Research) (BSY)

M.S.(R) is a two-year programme for full-time students and three-year programme for part-time students. Its emphasis is on research, with the thesis carrying 2/3rd of the credits.

Doctor of Philosophy (BSZ)

Ph.D. full-time admissions are based on performance in M.Tech./B.Tech. as well as GATE Scores. Part-time admissions require 2 years’ experience in lieu of GATE scores.

Master of Business Administration (SMT)

The MBA (with focus on Telecom Systems Management) is a 2 years (4 semesters) programme. It is designed to be convenient for practising professionals, with most classes scheduled in the morning or evening.
RESEARCH LABS

- **Research Scholar Lab:** The research group focuses on performance analysis of wireless communication systems which is helpful in practical link design. Specifically, the work is on Cognitive radio, and Smart grid technologies, Visible Light Communication (VLC), Free Space Optical (FSO) communication over large Multi-Input-Multi-Output (MIMO) systems. These technologies play an important role in enabling 5G communication. Another area is, providing routing solutions and designing protocols for best path selection to enable wireless data transfer with high coding and diversity gain. In 5G wireless networks, energy saving is an important area of research, for increasing lifetime of the devices and networks. The activities are aimed at addressing various security issues arising due to a presence of energy harvesting nodes in the network. For indoor communication in future 5G networks, VLC and FSO technologies provide enhanced data rates, high energy efficiency at lower costs. Work on optimizing power allocation in FSO for different channel models by exploiting channel state information is also done in this lab.

Underwater acoustic channels are generally recognized as one of the most difficult communication media in use today. Random fluctuations, large delay and Doppler spread, small bandwidth of the acoustic signal and frequency dependent absorption make this channel extremely complex. The advent of vector sensor recently has provided an opportunity to correct this bleak scenario to some extent. In our research, we emphasize on performance analysis of underwater acoustic communication system such as capacity, BER, outage probability and system design by using vector sensors. In this lab, we are also planning to work on underwater optical and hybrid (acoustic and optical) communication.

Security is non-negotiable and reliability is vital when it comes to defense applications. We are also developing a scheme for identification of the channel coding type and estimation of channel coding parameters of an intercepted demodulated satellite signal in collaboration with DRDO.

- **Pervasive Telecom Lab:** The pervasive telecom lab hosts several unique research initiatives. Central to the theme is the idea that telecom devices can be made ubiquitous, and deployed in numbers which are so large that data they gather is at a very high resolution. This data may be multi-dimensional but even with two dimensions - of space and time - it is extremely useful. The resulting Internet of Things and the Big Data flowing there from requires innovations in protocol stacks, hardware at layers 1, 2 and 3 in large distributed back-end repositories and in inference engines for the analytics. We have provisioned cloud repositories and have web-enabled several application domains such as healthcare, agriculture and animal management.

- **AIML Lab:** Artificial Intelligence and machine learning have become today’s hot topics as AI and ML
technologies increasingly find their way into everything from advanced quantum computing systems and leading-edge medical diagnostic systems to consumer electronics and “smart” personal assistants.

AIML lab aims at improving the quality of life of students through technology by bringing end to end multi-disciplinary researches to a single place.

- **Next Generation Wireless Communication Lab:** The “Next Generation Wireless Communication Laboratory” is focused on developing next generation wireless communication technologies (e.g., Large and Massive MIMO technologies, Cognitive Radio technologies, Physical Layer Security, Energy harvesting, Green Communication, Device to Device communication, mmWave communication systems). Emphasis will be on building new wireless communication systems and development of new technologies. Facilities set up in this lab will aid technology development, and bring in large amount of research grants from government and industry. This lab is expected to become a leading wireless communication lab in India. It is expected to help faculty devote more attention to technology development and demonstration without taking away too much time from theoretical research. Through M.Tech./B.Tech. projects, students will also get trained in designing new communication technologies. This will lead to skill development which will satisfy industry needs.

- **Ericsson IITD 5G Centre of Excellence:** Ericsson has set up a Centre of Excellence with 5G/4.5G test bed & Incubation Centre at IIT Delhi which is being used to drive the development of country’s IoT ecosystem on the cellular technology. This program has been conceptualized to fast-track realization of Digital India initiatives and aid application development for Indian start-ups and industries. This centre of excellence enables research and development to explore how some of the country’s key challenges can be addressed with advanced mobile technologies. The whole Test Bed program has a planned duration of 2 years which will be split in two phases. First phase will consist of deployment of LTE-A (4.5G) solution with advanced test cases including use cases for IoT. Second phase will consist of 5G NR deployment and test cases catering to 5G RF characteristics and key use cases like Broadband, beam tracking etc. 4.5G system is already up and running in Centre of Excellence and use cases like water monitoring has already been demonstrated. Going forward the emphasis is to conceptualize more use cases and run analytics from the cellular IOT use case data which will ensure seamless connectivity for billions of connected devices, machines, and things, supporting consumer, business, and industrial applications. 5G equipment which will be first in India will place India on par with other developed countries in terms of 5G network and application deployment is expected to be installed in Centre of Excellence in Q1/Q2-2018.
• **Advanced Wireless Lab:** Advanced Wireless Laboratory (IIA-107), led by Prof. Manav Bhatnagar, focuses on cutting edge research on next-generation wireless communications, with a primary focus on limited feedback-based wireless communications, free-space optical communication, power line communications (PLC), molecular communications, smart grid communications, satellite communication, and underwater wireless optical communications. The lab engages in research to ensure the security and privacy of wireless communication techniques employed in the aforementioned areas. Research outcomes are disseminated via journal publications, conference presentations, and presentations. Students pursuing Ph.D., M.Tech., and B.Tech. in IIT Delhi implement communication techniques in hardware using USRP kits.

• **Samsung Digital Academy Innovation Lab:** Samsung Innovation Lab is a state of the art research lab of Bharti School, IIT Delhi under supervision on Prof. Brejesh Lall. With many PhD students working in area of Computer Vision, Deep Learning and AI on many novel research ideas for solving novel social as well scientific problems. The lab boasts multiple CUDA capable rack servers, workstations and high end edge computing capabilities required for performing analytics on humongous data that is captured by multiple sensors, cameras etc. A brief description of some of the research activities being performed by the various Ph.D scholars along with support from PG and UG students follows: Sakshi Ahuja is pursuing her work in brain tumor analysis performing segmentation of tumor from multiple modalities and estimating tumor growth from pre and post-operative brain MRI database using deep learning. Anushikha Singh performs computer aided diagnosis of Pulmonary Tuberculosis for the Indian Subcontinent. This project involves segmentation of lung area in chest X-ray images followed by rib suppression and identification of abnormalities present in different zones of chest X-ray image. Ronak Gupta works on developing novel video compression methods for VR videos. He's also working on problems of detecting Traffic violation by vehicles from videos captured from a camera mounted on a car. One of the sub-problems is to localize and classify the type of vehicles such as car, bus, truck, auto & motorbike, pedestrians which are jaywalking or endangering on the road. Vinay Kaushik is working on developing novel algorithms to map real world terrain using an inexpensive camera in real time for AI based AR/VR apps such as gaming, navigation, automated driving, etc. Aditi is analysing marine environment by detecting and tracking aquatic animals and predicting their long term behaviour under water. She aims to predict the health of water bodies and also analyse the underwater ecosystem. Piyush is working on characterizing deep networks for better understanding how AI works and how can we make it better. Ayan is developing algorithms for better multirate signal processing. There has also been research in developing salience based segmentation methods for image retargeting, video super-resolution for future displays, action recognition framework based on compressive sensing using
Deep AI. There are several interesting cool projects going on in Samsung Innovation Lab. There's work on Air pollution monitoring and prediction, Agriculture based projects for predicting health and various plant diseases aimed at benefiting farmers in India and smart touch displays for classes. This lab is also part of organizing interesting challenges like Celestini Project India where researchers help undergrads solve real world problems like air pollution, vehicle to vehicle communication and women's safety. The lab works for developing cutting edge technology for solving novel problems in India.

- **Systems R&D Labs:**
 - **Central Research Facility on Advanced Electrical Characterization (CRF-AEC) Lab:** This lab houses some of the high-end electrical characterization equipment meant for wafer and chip level characterization of electronic devices and circuits down to cryogenic temperatures as well as mm-wave frequencies up to 67 GHz. The lab also has facility to perform low frequency noise measurements, DC measurements, and a solar simulator.

 - **High-frequency RF and Optical Communications Lab:** In this laboratory, we process high-frequency and high-bandwidth RF signals using photonic techniques such as microwave photonics, nonlinear optics and integrated optics to increase the flexibility and functionality of traditional wireless systems. Furthermore, we are working on Terabits-per-second high-capacity coherent optical communication systems.

 - **Communication Systems R&D Lab:** The lab is designed to house the core equipment of the proposed communication systems test and R&D bench at IIT Delhi as an Academia-Industry Collaborative R&D exercise towards faculty research translation, industry-grade systems/product development, and technology incubation. One of the key goals is to enable ourselves to come up with the technology development capabilities for the Indian Strategic Needs in the area of or involving Communication Engineering.

LABORATORY FACILITIES

TEACHING LABS:

• **Communication System and Signal Processing lab:** This Eco-friendly Lab provides about 45 personal dedicated workstations. This secured access monitored lab is open for student access on 24/7/365 basis. The lab houses equipment for advanced experimentation in Signal Processing and embedded Systems for use in modern communication systems.

This lab uses open source software – versions of Ubuntu - on all compute nodes. The other equipment/facilities include Arduino, Raspberry Pi Boards, SDR (USRP) Boards, DSP and FPGA Boards, tool chains for FPGA, DSOs with CAN/LIN triggering, Digital Multi-meters, EFI workstation, ESD workstation with Soldering and De-soldering station, SMD Rework Station, Oscilloscope with FlexRay Trigger Capability, Logic Analyzers, Protocol Analyzers.
James Gomes, Ph.D. (Tulane Univ.)
Professor
Neurodegenerative diseases, systems theory, network biology.

Manidipa Banerjee, Ph.D. (UCSD)
Professor
Hepatitis A Virus Entry, Using Viruses as Nanoparticles for Drug Delivery.

Tapan K. Chaudhuri, Ph.D. (Bose Institute)
Professor
Chaperone Assisted Protein Folding, Protein Engineering and Molecular Biophysics.

Archana Chugh, Ph.D. (Delhi Univ.)
Associate Professor
Cell Penetrating Peptides, Marine Bioprospecting, Plant-based Therapeutics, IPRs and Governance in Naval Life Science Technologies.

Chinmoy S. Dey, Ph.D. (Jadavpur Univ.)
Professor
Insulin Resistant (Type 2) Diabetes and Leishmaniasis, Signal Transduction.

Bishwajit Kundu, Ph.D. (Inst. of Microbial Tech.)
Professor
Protein Misfolding and Aggregation.

Manoj B. Menon, Ph.D. (Hanover Medical School, DE)
Assistant Professor
Cell Biology and Signalling, Septin Cytoskeleton, Regulation of Autophagy and Cell Death.

Shilpi Minocha, Ph.D. (University of Zurich)
Assistant Professor
Regulation of Gene Expression, Metabolism, Liver Regeneration, Non-alcoholic Fatty Liver Disease, Hepatocellular Carcinoma.

Aditya Mittal, Ph.D. (Drexel Univ.)
Professor
Kinetics and Self Assembly in Biological Systems.

Amitabha Mukhopadhyay, Ph.D. (Inst. of Microbial Tech.)
Professor
Modulation of Host Intracellular Trafficking by Pathogens.

Tapan K. Nayak, Ph.D. (IISc. Bangalore)
Assistant Professor
Ion Channel and Receptor Biology.
Vivekanandan Perumal, Ph.D. (CMC Vellore)
Professor
Hepatitis B Virus, Hepatocellular Carcinoma, microRNA in Liver Cancer, G-quadruplexes in Virus Genomes.

Ashok K. Patel, Ph.D. (IMS, BHU)
Associate Professor
Biomolecular X-Ray Crystallography, Molecular and Structural Virology, Chromatin Remodeling and Diseases.

Saurabh Raj, Ph.D. (The Institute of Photonic Sciences)
Assistant Professor
Single molecule biophysics, DNA-protein interactions, Kinetic studies of CRISPR-Cas interactions, Cellular mechanochemistry.

Anita Roy, Ph.D. (Saha Institute of Nuclear Physics)
Assistant Professor
Myeloid Hematopoiesis, Megakaryopoiesis and Platelet Biology, Myeloid Leukemia.

B. Jayaram, Ph.D. (City Univ. NY)
Associated Professor
Computational Biology, Molecular Design.
INTRODUCTION

The School of Biological Sciences at Indian Institute of Technology Delhi was established in December 2008, with a vision to promote innovative interdisciplinary research by interfacing modern biology with applied engineering sciences, and to train scholars to be the next generation scientists capable of addressing problems affecting human health and welfare.

The establishment of the School was guided by a National Advisory Committee (NAC) co-chaired by Prof. Surendra Prasad, former Director IIT Delhi and Prof. M. Vijayan, Indian Institute of Science (IISc), Bangalore. The mandate of the School is to work in the broad thematic areas of infectious diseases and non-communicable disorders.

Currently, the School has 15 faculty members, 102 students and 11 postdoctoral fellows conducting inter- and multi-disciplinary research at molecular, structural and systems levels. In addition to a vibrant Ph.D. programme, the School offers an M.S. (Research) course, and a Minor degree programme in Biological Sciences for IIT Delhi B.Tech. students. 48 students have graduated with PhDs, and 06 students have graduated with M.S. (Research) degrees. The School has advanced equipment facilities and is funded by IIT-Delhi, Kusuma Trust, DST, DBT, ICMR etc.

Vision: To become the pioneers of modern interdisciplinary biological sciences by integrating emerging disciplines with biological sciences, and to nurture and sustain a vibrant comprehensive programme in research and instruction.

Mission: Promoting goal-oriented innovative interdisciplinary research by interfacing modern biology with applied engineering sciences to address problems affecting human health and welfare, and training scholars to be the next generation scientists.

ACADEMIC PROGRAMMES

Currently, the School offers a Ph.D. Programme M.S. (Research) and a Minor Area option in Biological Sciences for undergraduate students. The key strengths of these programmes are their multi- and inter-disciplinary perspective of biological sciences. The flagship UG course of the School is SBL 100: Introductory Biology for Engineers, a core requirement for all incoming UG students. This course, with a laboratory component, is aimed at introducing students to modern biology with an emphasis on evolution of biology as a multi-disciplinary field. Students are made aware of application of engineering principles in biology and how to engineer robust solutions inspired by biological examples.

Ph.D. Programme: In general, there will be no restriction on the background of the student in terms of the qualifying degree. However, it is expected that the student’s prior academic career will demonstrate interest in the broad field of biological sciences. A student applying to the programme can have a B.Tech., B.E., M.Tech., M.E., M.Sc. or M.S. in any discipline of science and engineering. Interested/deserving candidates are encouraged to apply as per the procedures at the IIT Delhi admissions website. Selection of Ph.D. students is based on a written test (for
the eligible applicants) followed by an interview (of those screened from the written test). The written test will examine the analytical ability of students with examples from biology, and does not require memorization of any biological terminologies. A sample question paper is available on the School’s website.

After admission to the Ph.D. programme, the background needed for carrying out research work by the students will be developed through a selection of courses from those developed for this Ph.D. programme, and from existing courses in the Institute. The courses for the Ph.D. programme will be evolving continuously with the aim of training the next generation of researchers in biological sciences. These courses will bring together a combination of experiment and theory for understanding how biological systems work from the cellular to the systems level.

Minor Area Programme: Academia and industry are realizing the rapid transformation of society driven by bio-based economy. The impact of biological sciences on all aspects of human life, particularly, healthcare and utilization of biodiversity for sustainable future, is evident. The creation of new technology and its management will need a new genre of skilled human resources knowledgeable in the field of biological sciences. Emerging technologies are now being created where biology meets the engineering sciences, physics, chemistry, computer science and mathematics. Engineering new materials and devices inspired by nature, engineering drug delivery systems are but a few of a plethora of opportunities arising at the interface of biological sciences. Keeping in view, the potential of biological sciences in various spheres of life, the School of Biological Sciences has floated a Minor Area programme for undergraduate students. Through this programme, a student will discover biology from an engineering science viewpoint. A student will have the opportunity to explore a variety of areas within the diverse field of biological sciences or specialize in a certain aspect of biological sciences by choosing courses in an area of interest.

DOCTORAL

In general, there will be no restriction on the background of the student in terms of the qualifying degree. However, it is expected that the student’s prior academic career will demonstrate interest in the broad field of biological sciences. A student applying to the programme can have a B.Tech., B.E., M.Tech., M.E., M.Sc. or M.S. in any discipline of science and engineering. Interested/deserving candidates are encouraged to apply as per the procedures at the IIT Delhi admissions website.

The background needed for carrying out research work by the students will be developed through a selection of courses from those developed for this Ph.D. programme, and from existing courses in the Institute. The courses for the Ph.D. programme will be evolving continuously with the aim of training the next generation of researchers in biological sciences. These courses will bring together a combination of experiment and theory for understanding how biological systems work from the cellular to the systems level.
M.S. (RESEARCH)

The M.S. (Research) programme was initiated to enhance existing teaching and research activities being carried out by the School. Students will be trained on newer technologies currently desirable in the industry and academia. The technological focus on the M.S. (Research) programme would be to provide students with practical knowledge.

The School will admit students from different academic backgrounds and levels of preparation. The board guidelines for admission are:

 i) Bachelor’s or Master’s degree in any engineering discipline.

 ii) Bachelor’s (four - year programme) or Master’s degree in any Chemistry, Physics, Mathematics or Life Sciences.

The admission will be according to Institute rules once a year. A student may enroll as a full-time or a part-time candidate. Student admitted to the programme will be assigned course work according to the requirements of the research problem. The credits and the minimum CGPA requirements will be according to the Institute rules. The courses will be awarded to build the student’s background and to impart knowledge in specific area.

The student must take all courses under the compulsory category and the remaining credits from the other courses of the School or relevant courses from the Institute. The research problems will be given by the faculty from their area of expertise. The student will complete the problem assigned by the supervisor, execute the research work and write a thesis that merits the award of M.S. (Research) degree.

LABORATORY FACILITIES

The school has all facilities to carry out research in biological sciences. These include:

- Spectrophotometers
- Refrigerated tabletop centrifuges
- Ultracentrifuges
- Fast protein liquid chromatography (FPLC) and high pressure liquid Chromatography (HPLC) systems
- Gel imaging and documentation equipment
- PhosphorImager
- Cell culture facilities including hoods
- Incubators and inverted microscope
- CD machine
- Fluorimeter
• Real time PCR system for quantification of nucleic acids
• ELISA washers and readers
• Confocal microscope for advanced cell biological studies

The new major equipment include:
• FACS Aria III
• Microarray platform comprising of Affymetrix system Gene chip 7G
• Gene chip Scanner 3000 7G
• Gene chip Fluidics Station
• Gene chip Hybridization Oven
• Real time PCR system (MX3000P)
• Lab chip GX
• Zephyr genomics workstation
• Cryo-EM system

In addition to all these, the school has access of a range of software licensed by the Insititute for teaching and research. It has inter- and intra-net and dedicated access to the supercomputing computing facility of IIT Delhi.
The view from quadrangle of the School building
ASSOCIATED FACULTY MEMBERS

Department of Applied Mechanics
Souvik Chakraborty, Ph.D. (IIT Roorkee)
Anupam Dewan, Ph.D. (IISc., Bangalore)
Puneet Mahajan, Ph.D. (Montana State University)
Sushma Santapuri, Ph.D. (Ohio State)

Dept. of Biochemical Engineering and Biotechnology
Shaikh Z. Ahammad, Ph.D. (IIT Delhi)
Ravikrishnan Elangovan, Ph.D. (Florence Univ.)
Atul Narang, Ph.D. (Purdue Univ.)
T. R. Sreekrishnan, Ph.D. (IIT Delhi)

Department of Chemical Engineering
Suddhasatwa Basu, Ph.D. (IISc., Bangalore)
Shalini Gupta, Ph.D. (NC State Univ.)
Anurag S. Rathore, Ph.D. (Yale University)
Anil Verma, Ph.D. (IIT Delhi)
M. Ali Haider, Ph.D. (Univ. of Virginia)

Department of Chemistry
B. Jayaram, Ph.D. (City University NY)
Hemant Kumar Kashyap, Ph.D. (Jadavpur Univ.)
Tanmay Dutta, Ph.D. (Calcutta University)
V. Haridas, Ph.D. (NIIST, Trivandrum)
Shivajirao L. Gholap, Ph.D. (IISc., Bangalore)

Department of Civil Engineering
Sumedha Chakma, Ph.D. (IIT Delhi)
Tanusree Chakraborty, Ph.D. (Purdue University)
Vasant Matsagar, Ph.D. (IIT Bombay)
Babu J. Alappat, Ph.D. (IIT Bombay)

Department of Computer Science & Engineering
Vireshwar Kumar, Ph.D. (Virginia Polytechnic Institute and State University)

Department of Electrical Engineering
Indra Narayan Kar, Ph.D. (IIT Kanpur)
Brejesh Lall, Ph.D. (IIT Delhi)
Dhiman Mallick, Ph.D. (Tyndall National Institute, University College Cork)
Mashuq-un-Nabi, Ph.D. (IIT Bombay)
B. Panigrahi, Ph.D. (Sambalpur Univ.)
Sumit Pramanick, Ph.D. (IISc., Bangalore)
Manan Suri, Ph.D. (INPG, France)

Department of Humanities & Social Science
Vibha Arora, Ph.D. (Oxford Univ.)
Varsha Singh, Ph.D. (IIT Bombay)

Department of Management Studies
Sanjay Dhir, Fellow, Ph.D. (IIM, Lucknow)
Surya Prakash Singh, Ph.D. (IIT, Kanpur)
Department of Materials Science and Engineering
Ankur Goswami, Ph.D. (IISc., Bangalore)
Suresh Neelakantan, Ph.D. (TU Delft)
Nirat Ray, Ph.D. (MIT)
Bijay P. Tripathi, Ph.D. (CSMCRI, Bhavnagar)

Department of Mathematics
Niladri Chatterjee, Ph.D. (Univ. of London)
Harish Kumar, Ph.D. (ETH Zurich)

Department of Mechanical Engineering
Naresh Bhatnagar, Ph.D. (IIT Bombay)
Anoop Chawla, Ph.D. (IIT Kanpur)
Ashish K. Darpe, Ph.D. (IIT Delhi)
Amit Gupta, Ph.D. (University of Central Florida)
Subir Kumar Saha, Ph.D. (McGill Univ.)
Satinder P. Singh, Ph.D. (IIT Delhi)
Kaushik Mukherjee, Ph.D. (IIT Kharagpur)

Department of Physics
Varsha Banerjee, Ph.D. (IISc., Bangalore)
Saswata Bhattacharya, Ph.D. (IACS, Kolkata)

Department of Textile and Fibre Engineering
R. Alagirusamy, Ph.D. (Georgia University)
S. Wazed Ali, Ph.D. (IIT Delhi)
Apurba Das, Ph.D. (IIT Delhi)

Centre for Applied Research in Electronics
S.M. Ishtiaque, Ph.D. (Tech. Univ. of Liberec)
Bipin Kumar, Ph.D. (IIT Delhi)
Abhijit Majumdar, Ph.D. (Jadavpur University)
Bhanu Nandan, Ph.D. (MSRDE, Kanpur University)

Centre for Atmospheric Sciences
Sandeep Sahany, Ph.D. (IISc., Bangalore)

Centre for Automotive Research and Tribology
S. Fatima, Ph.D. (IIT Kharagpur)

Center for Biomedical Engineering
Dinesh Kalyanasundaram, Ph.D. (Iowa State University, USA)
Sandeep Kumar Jha, Ph.D. (Bhabha Atomic Research Centre, Mumbai)

Kusuma School of Biological Sciences
Vivekanandan Perumal, Ph.D. (CMC Vellore)
Aditya Mittal, Ph.D. (Drexel Univ.)
Manidipa Banerjee, Ph.D. (UCSD)
James Gomes, Ph.D. (Tulane University)

Center for Rural Development and Technology
Satya Narayan Naik, Ph.D. (IIT Delhi)
INTRODUCTION

The School was founded in October 2017 with the objective to actively encourage our researchers and students to stretch their boundaries and to collaborate with people from other disciplines to help bring broader perspectives and ideas to research problems of different kinds. It is envisioned that the school will not only accelerate growth of interdisciplinary research at IIT Delhi but would enable to engage with faculty across Institutes such as AIIMS, JNU etc. It is expected that over a period of time the School would be able to “seed” a number of inter-disciplinary programmes that are unnoticed today. IIT Delhi already has a number of strategic interdisciplinary research groups working on various issues including a few related to societal problems but with limited scope. We believe that SIRe will serve as an ideal platform for the growing numbers of Centres of excellence and MOUs with other organizations/institutes/research laboratories to undertake problems that require solutions from completely different perspectives.

SIRe is a virtual school. Currently the School runs a Ph.D. program. Shortly, SIRe plans to start M.S. (Research). All faculty who have a registered Ph.D. student at SIRe are faculty members of the School. Currently we have fourteen Ph.D. students registered at this School with twenty five faculty members from ten Departments, two Centres, one School. All areas of science, engineering, humanities and management pursued at IIT Delhi are considered under the umbrella of SIRe. IIT Delhi has signed MOUs with DRDO, AIIMS and JNU, one student is already registered jointly with JNU. Other institutions are invited to participate in this endeavor and sign an MOU with IIT Delhi to enable them to register Ph.D. students at SIRe.

MISSION AND VISION

IIT Delhi is a research-intensive institute. It has created SIRe to promote interdisciplinary research. Over the past six decades, the institute has established several strong disciplines in the area of engineering, science and humanities. The disciplines will remain a central element of the academic system but SIRe will serve as a catalyst to bring together people from various departments and neighbouring academic institutions and industry to solve complex questions and problems in cross disciplinary research. It will inculcate scientific curiosity, and encourage faculty and students to congregate at the interfaces and frontiers of disciplines and foster new research avenues.
SCHOOL OF
PUBLIC POLICY
Head of the School

Ambuj D. Sagar, Ph.D. (Massachusetts Institute of Technology)
Professor
Science, technology and development, innovation policy for meeting sustainability and inclusivity challenges, energy innovation policy and strategies, climate change policy and politics, and higher education policy.

Soutrik Basu, Ph.D. (Wageningen School of Social Sciences (WASS))
Assistant Professor

Rohit Chandra, Ph.D. (Harvard Kennedy School)
Assistant Professor

Kaveri Iychettira, Ph.D. (Delft University of Technology)
Assistant Professor
Policy design and analysis; energy transitions in developing countries; institutional analyses; modelling for policy analysis (computational social science, agent-based modelling); electricity market design; decarbonizing electricity, mobility; water-agriculture-energy nexus.

Abhishek Malhotra, Doctor of Science (ETH Zurich)
Assistant Professor
Policy design for low-carbon development, innovation in clean energy technologies, green industrial policy, technological capabilities and capability-building.

Sanjay Mitra, Master of Public Administration (Harvard University)
Professor of Practice
Governance and Decentralization, Public Formulation, National Security, Electricity Policy.

Nandana Sengupta, Ph.D. (Tepper School of Business at Carnegie Mellon University)
Assistant Professor

Upasna Sharma, Ph.D. (IIT Bombay)
Associate Professor
Disaster Risk Reduction and Management, Information and Communication Technologies for Agriculture, Climate Change Adaptation.
INTRODUCTION

The School of Public Policy is a newly-established entity in the Indian Institute of Technology Delhi, which is one of India’s premier engineering and education and research institutions. The IITD-SPP aims to be an academic centre of excellence for domestic and global policy research, with a particular emphasis on science, technology, innovation (STI), and development that will contribute positively and significantly to national and global policy processes on key issues of importance to India and other countries.

As a premier institute of technology, IIT Delhi is uniquely placed to engage with broader issues relating to science and technology. It has the analytical and quantitative culture needed for engaging in STI policy issues. Furthermore, many faculty members on campus already are engaged in some form or fashion with S&T policy through their own work. As an academic institution, IIT Delhi offers a value-neutral location for engaging with multiple/conflicting perspectives and its high profile also gives it convening power to bring together stakeholders as well as engage with policy makers. The School will also link with emerging programs at IIT Delhi such as those involving design, innovation, and entrepreneurship. Overall, we expect the SPP to add to policy-analytical knowledge and capabilities in the country, with a special, and much-needed, focus on issues with a scientific and technical content, and couple this work to decision-making processes at the local, national, and international levels.

Specific objectives of the IITD-SPP are to:

- Carry out world-class research on a range of topics that relate to the production and use of scientific and technical knowledge for developmental goals in a changing global and domestic context;
- Develop policy proposals to address specific developmental challenges as well as strategies for their implementation;
- Engage with high-level policy makers on ‘policy needs’, implementation strategy, and monitoring & assessment;
- Promote a public dialogue with citizens, academics, and policy makers on policy and societal implications of major scientific and technological changes;
- Help build local capacity for policy analysis and implementation through the training of the next generation of scholars and practitioners and through the upgrading of the skills of existing personnel; and
- Enhance IIT Delhi’s educational offerings, research profile, as well as social impact.

ACADEMIC PROGRAMMES

Ph.D. Programme

IITD-SPP offers a full-time as well as part-time Ph.D. programme to highly motivated individuals interested in working on research problems related to STI policy in the areas of Energy and Environment; Agriculture, Food and
IITD-SPP conducted its first round of intake for the Ph.D. programme in May 2019 and has since then admitted a talented pool of students into its Ph.D. programme in each successive round of admissions.

Master of Public Policy Programme

IITD-SPP is starting its flagship 2 years Master of Public Policy (MPP) programme in Science, Technology and Innovation Policy from the academic year 2021-22. The objective of the program is to provide rigorous interdisciplinary training to students from diverse backgrounds and to transform them into top-quality policy professionals and policy scholars. Recruitment of the first batch for the MPP programme is now completed. We will update the website before the start of the next admission session in 2022-23.

Future Plans for Academic Programmes

In the near term, once we recruit sufficient faculty, we anticipate the development of a minor in Science, Technology and Public Policy (allowing focus on areas such as Technology and Innovation Policy, Technology and Development, or Law and Technology, which would involve a structured sequence of courses. Core courses for the minor will be designed in collaboration with various departments to enhance the general education of undergraduate students by ensuring that they have basic exposure to, and familiarity with, policy, legal, and societal aspects of science and technology issues. Courses may also be organized as seminars to provide the opportunity for students to engage in cutting-edge discussions on current public policy topics, e.g., Science, Technology, and Sustainable Development; Industrial Innovation and Organization; Health Systems and Innovations; Science, Technology, and the Future of Agriculture; and Information Infrastructure. With further recruitment, we also expect eventually to develop Executive Education courses for policy-makers as well as other senior personnel from relevant governmental, inter-governmental, and private organizations. Over time, we can also imagine the exploration of a B.Tech.-MPP dual degree programme.

RESEARCH AREAS

While the School of Public Policy is only just beginning to get off the ground, some faculty members at IIT Delhi have been engaging in STI policy research projects through a major grant from the Department of Science and Technology – the DST-Center for Policy Research – as well as some smaller research grants to individual faculty members. These include studying the productivity of technically-skilled returnees, linkages of MNC R&D centers to the Indian innovation ecosystem, effectiveness of academia-industry knowledge linkages, factors affecting the performance of publicly-funded incubators and ICT-based agro-metrological advisories. We also have contributed to the development of a draft technology-led innovation policy for DST and also held a number of workshops on various topics (such as inclusive innovation and technology assessment).
INTERDISCIPLINARY RESEARCH PROGRAMMES

VLSI Design Tools and Technology Programme

VLSI Design, Tools, and Technology is an interdisciplinary Masters level programme course offered by IIT Delhi. The course is run by three departments: Electrical, Computer Science and CARE.

This is a completely sponsored programme, in which each candidate is sponsored by an industry or a sponsored research project. Current and past sponsors include Qualcomm, Texas Instruments, Cypress, Cadence, Intel, Analog Devices, Nokia, NXP, Freescale, Mentor Graphics, Nvidia, IBM, and ST Microelectronics.

Streams offered under VDTT are: Embedded Intelligence, ASIC and SoC Design, Micro and Nano Devices.

Scope for projects in analytics and IoT domain. Design your own Application Specific ICs or model your own Semicon devices.

Once admitted, the students study in IIT Delhi for the first three semesters and have to work on a project at the company site in the 4th semester. For more details visit: http://vdtt.iitd.ac.in/

Opto-electronics and Optical Communication Research Programme

The programme is focused for research in the field of Fibre Optics and Optical Communication. Main participating departments / centres are Physics, Electrical Engineering, IDDC and CARE. This programme has received fundings from the Government agencies like MHRD, DST, DIT (formerly DoE), and DoT. In addition, R&D work has also attracted considerable international collaboration from universities in UK, France and National Institute of Standards and Technology in USA. The development work has led to commercialisation of a fibre optic educational kit and an erbium doped fiber amplifier.

The programme carries research in the following areas

Analytical and numerical modelling of the propagation characteristics of optical fibres and integrated optical waveguides, design and simulation of novel in-line fibre optic components such as polarizers, directional couplers, and mode filters, characterisation of birefringent fibres, development of optical fibre-based sensors, nonlinear interactions in fibre and integrated optical waveguides, Optical Amplifier, Coherent optical communication, Optical Networks, QoS issues of WDM Networks, SONET / SDH, fiber in Access Networks, Erbium Doped Fibre Amplifiers (EDFA), Raman Fiber Amplifiers, Dispersion Compensating Fibres (DCF), Fibre Bragg Gratings (FBG), fibre optic sensors for civil engineering structures, photonic band gap fibres, free space optical systems, OCDMA systems, etc.

For more details visit: http://oeoc.iitd.ac.in/jop/
INTERDISCIPLINARY

M.TECH.
PROGRAMMES
INTERDISCIPLINARY M.TECH. PROGRAMMES

Besides a number of regular courses that are offered at the postgraduate level by the academic departments/centres, the Institute offers Interdisciplinary M.Tech. programmes which are managed by the Programme Executive Committees and Programme Advisory Committees that are constituted by nominating faculty from the concerned departments and centres. Each programme is looked after by the Programme Coordinator who is appointed by the Director.

Masters of Technology Programmes

The institute recognises and actively supports academic activities jointly conducted by faculty across the departments and centres. Such activities encourage teaching, research and industry/professional interactions, these are listed below. The Interdisciplinary Post Graduate programmes are in the following specializations:

Energy Studies: This programmes introduces students from different backgrounds to various aspects of energy, sources, fuels, energy conversion and energy systems amongst others. Commercial and non-commercial energy sources are covered.

Industrial Tribology and Maintenance Engineering: Various basic and applied aspects of tribology, including wear and maintenance engineering are covered in this programme. Students are introduced to diagnostic maintenance, reliability, availability and maintainability engineering as well as failure analysis.

Instrument Technology: This programme includes students to various instruments, electronic techniques for signal conditioning and instrument design. The electives cover a wide range of topics in instrumentation, electrical engineering, mechanical engineering and physics.

Opto-Electronics and Optical Communication: This programme is jointly offered by physics and electrical engineering departments. The courses cover a wide variety of basic and applied courses in fibre optics, optical-electronics and digital communication.

VLSI Design Tools and Technology: This programme is taught by the faculty of computer science and engineering, electrical engineering departments and CARE. The coursework includes courses on MOS, VLSI and VLSI design and VLSI system. The students gain proficiency in the use of state-of-art tools in VLSI design. The programme is largely supported by industries engaged in VLSI design.

Telecommunication Technology Management: A set of courses in digital communication and systems, wireless communication and telecommunication management form the core of this programme. Faculty of electrical engineering and management studies departments participate in the teaching of this programme.

M.Tech. in Cyber Security: This programme is offered to students who are interested in advanced learning and research in any area of Cyber Security.
7. MAJOR CENTRAL FACILITIES
7. MAJOR CENTRAL FACILITIES
The Institute has following central facilities for smooth functioning of Academics, Research and Outreach.

- Central Research Facility
- Nanoscale Research Facility
- Industrial Research and Development (unit)
- Training and Placement (unit)
- Central Workshop
- Central Library

7.1 Central Research Facility (CRF)

Purpose and Aim of CRF
Central Research Facility (CRF) is a common instrument and fabrication facility of IIT Delhi created to support students in their research activities. CRF has state-of-the-art analytical and instruments manned by qualified personnel to provide sample testing and analysis to UG, PG, Ph.D. students and other research staff. The facilities are also made available, on payment basis, to other academic and research institutions, industries and organizations in the neighborhood.

The aims of CRF are:

- To provide expertise in the analytical sciences and to facilitate research on the structure and function of molecules and materials.
- To engage in the analytical sciences with student community, government research labs and commercial partners.
- To foster enthusiasm and collaboration in scientific research.
- To strengthen the research-relevant infrastructure of basic science and technology and built a facility having capabilities to carry out research of top international standards.

Structure of CRF
The policies and activities of CRF are monitored by Central Facilities Committee (CFC), which is appointed by the Director and is chaired by DD(S&P). The constitution of the current CFC is as under:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Official</th>
<th>Status</th>
<th>Nominee of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dy. Director (Strategy and Planning)</td>
<td>Chairman</td>
<td>Director</td>
</tr>
<tr>
<td>2</td>
<td>Dy. Director (Operations)</td>
<td>Member</td>
<td>Ex-officio</td>
</tr>
<tr>
<td>3</td>
<td>Dean (R&D)</td>
<td>Member</td>
<td>Ex-officio</td>
</tr>
<tr>
<td>4</td>
<td>Associate Dean Academics (PG Research)</td>
<td>Member</td>
<td>Ex-officio</td>
</tr>
<tr>
<td>5</td>
<td>Prof. Bhaskar Mitra (Deptt. of Electrical Engineering)</td>
<td>Member</td>
<td>Director</td>
</tr>
<tr>
<td>6</td>
<td>Prof. Tapan K. Nayak (Kusuma School of Biological Sciences)</td>
<td>Member</td>
<td>Director</td>
</tr>
<tr>
<td>7</td>
<td>Prof. (Ms.) Jyoti Phirani (Deptt. of Chemical Engineering)</td>
<td>Member</td>
<td>Director</td>
</tr>
<tr>
<td>8</td>
<td>Prof. Suresh Neelkantan (Deptt. of Materials Science & Engg.)</td>
<td>Member</td>
<td>Director</td>
</tr>
<tr>
<td>9</td>
<td>Prof. Pankaj Srivastava, Head, CRF</td>
<td>Member</td>
<td>Ex-officio</td>
</tr>
<tr>
<td>10</td>
<td>Prof. Ashwini Kumar Agarwal, Ex-Head, CRF</td>
<td>Member</td>
<td>Ex-officio</td>
</tr>
<tr>
<td>11</td>
<td>Prof. Sameer Sapra, Associate Head, CRF</td>
<td>Member/Convener</td>
<td>Ex-officio</td>
</tr>
</tbody>
</table>
The operations of CRF are managed by Head and Associate Head. They may be contacted at:

Head
Prof. Pankaj Srivastava (Department of Physics)
Tel: +91-11-26596558; **E-mail:** pankajs@physics.iitd.ac.in

Associate Head
Prof. Sameer Sapra (Department of Chemistry)
Tel: +91-11-2659 1561; **E-mail:** sapra@chemistry.iitd.ac.in

Various facilities under CRF
Institute Central Research Facility is equipped with the following instrument and fabrication facilities.
The facilities under CRF can be categorized under three major categories:

(A) Electron Microscopy Facilities
(B) Spectroscopy Facilities
(C) Other Facilities
(D) CRF Sonipat Facilities

The details of the facilities are as follows:

A. ELECTRON MICROSCOPY FACILITIES
Transmission Electron Microscope is a very powerful tool to provide morphologic, compositional and crystallographic information on samples. A high energybeam of electrons in kV is passed through a very thin sample, and the interactions between the electrons and the atoms can be used to observe features such as the crystal structure, dislocations and grain boundaries.

1. **Cryo HR-Transmission Electron Microscopy**
 (Cryo HR-TEM)
The TEM facility at IIT-Delhi consists of a 200 KV TEM, with a high brightness field-emission gun (FEG) source which produces improved sensitivity and resolution (0.1 nm) compared to more traditional thermionic sources like LaB6 or Tungsten filaments. This facility can also be utilized for high resolution analysis of the structure and organization of large biological molecules such as protein complexes, viruses etc through cryoelectron microscopy. Accessory equipment for plunge freezing samples, plasma cleaning grids and holders are available.

Figure 1: Cryo HR TEM
2. Transmission Electron Microscopy (TEM)

This facility consists of 120 kV TEM which is optimized for high contrast imaging for biological, low Z, and materials science applications. It is equipped with LaB₆/Tungsten filaments emitter, latest large-area SDD detectors, compact footprint and simplified GUI with multitouch screen for optimal ease of use.

Equipment in Facility:

Microscope: The JEOL JEM-1400 Plus Transmission Electron Microscope (TEM) features high resolution/high contrast imaging. It has a maximum accelerating voltage of 120 kV, a ±70 degrees tilted computer controlled stage. With the JEM-1400Plus, images from the ultra LOWMAG mode (min. mag. ×10) to the MAG mode (max. mag. ×1.2 M) can be acquired with AMT camera, resulting seamless observation with no switching of cameras or shifting one’s gaze to a fluorescent screen. Using the auto montage function (provided as standard) makes it easy to acquire high-precision images of a wide field of view.

Point and Shoot function: This function allows the user to move a field of view to target position pointed by clicking on a previously-acquired image. The Point and Shoot function allows users to view a target image without changing optical conditions such as focus or magnification.

Intelligent Panel: An advanced-function, simply-designed operation panel was developed. The rich and various patterns on the color display of the organic EL enable to display a function of buttons with easy-to-see and user-friendly accessibility. About 50 kinds of button patterns are provided and the functions of the buttons are customizable on the user’s selection.

Softwares: TEMCON software is used for measurements.

3. High-resolution Transmission Electron Microscopy (HRTEM)

The Tecnai G2 20 is a highly advanced, state-of-the-art transmission electron microscope with an unrivalled task-oriented user interface. It offers high performance with versatility, high productivity with ease of use, and all in a personal environment. The accessories that may be fitted onto these systems (e.g. STEM,
CCD cameras, EDX) are embedded into the user interface, allowing differently experienced operators to fully utilize the functionality of the total system through one coherent interface.

The Tecnai G2 20 is a reliable and versatile instrument which is ideally suited for studying a wide range of general and advanced materials, soft matter, composites, hybrids, tissues and cellular compounds. The flexibility to change the high tension to any other value in a minute helps to operate the Tecnai G2 20 always at optimum experimental conditions.

The combination of high resolution 2D imaging at both ambient conditions, bright-field, dark-field STEM imaging, electron diffraction and detailed microanalysis, makes the Tecnai G2 20 a versatile tool for classical materials science as well as life science applications.

4. Field Emission Scanning Electron Microscope (FESEM) with Oxford-EDX

The Quanta 200 FEG Scanning Electron Microscope (SEM) offers nanometer resolution and a high signal to noise ratio in both regular high vacuum and environmental modes. The EDS consists latest 80 mm2 SDD detector enables detection of elements under high resolution. Quanta FEG 200 comprises of different types like ETD (Everhart-Thornley detector), Backscattered Electrons Detector (BSED), Large Field Detector (LFD), and Gaseous Secondary Electron Detector (GSED). STEM (Scanning Transmission Electron Microscopy) is also possible to form atomic resolution images and high contrast imaging of biological samples.

5. Scanning Electron Microscopy (SEM)

Zeiss EVO 50 & EVO18 are versatile analytical electron microscopes with a large specimen chamber. The EVO50 series can handle large specimens at the analytical working distance of 8.5 mm owing to a combination of the inclined detectors and the sharp conical objective lens. The class leading X-ray geometry allows for the addition of an EDS detector. The instrument can achieve 2.0 nm resolution.
6. Ultramicrotomy

Ultramicrotomy is a method for cutting specimens into extremely thin slices, called ultra-thin sections, which can be studied and documented at different magnifications in a transmission electron microscope. Ultra thin sections of specimens are cut using a specialized instrument called an “ultramicrotome”. The usual thicknesses for transmission electron microscopic examinations range between 20 nm and 150 nm. There are various techniques for preparing such thin samples. Besides ion etching, FIB, tripod polishing and electrochemical processing, ultramicrotomy is a fast and clean method of producing ultra-thin sections of biological samples as well as polymers, rubber, ductile and even hard and brittle materials. A key advantage of ultramicrotomy is the size and homogeneity of the electron-transparent area of specimens prepared with this technique.

7. Atom Probe Tomography

Atom probe tomography is a unique characterization technique that facilitates three-dimensional visualization as well as in-depth analysis of nano-scale features at near-atomic scale resolution. APT is fundamentally a time of-flight (TOF) mass spectrometry technique. The power of APT lies in its ability to tie compositional information to structure. LEAP accomplishes this with high analytical sensitivity which can reach one atomic part per million (appm).

Design and development of materials with tailored properties at the nano scale requires understanding of elemental distribution at the atomic scale. Atom probe tomography with Local Electrode Atom Probe (LEAP) has the capability of characterizing materials ranging from metals, polymers, ceramics, semiconductors and composites, for their elemental distribution in 3D at the atomic scale.
The APT facility at IIT Delhi is a part of the National Facility for Atom Probe Tomography (NFAPT) situated at IIT Madras with Nodal Centres at IIT Delhi, IIT Bombay, IIT Kanpur, IIT Kharagpur, IIT Ropar and ARCI.

B. SPECTROSCOPY FACILITIES

1. Nuclear Magnetic Resonance Spectroscopy (300 MHz, 400 MHz and 500 MHz)

NMR spectroscopy is equipped with three superconducting NMR spectrometers operating in the liquids mode. The spectrometers range from 7.05 Tesla (300 MHz 1H frequency) to 11.74 Tesla (500 MHz 1H frequency). All three spectrometers are of the Bruker Avance AV-III type and are equipped with broadband probes with a single axis gradient. The 400 MHz spectrometer has an autosampler for accelerated workflow.

2. NMR 400 MHz with Liquid and Solid Probe

In JNM-ECA Series (Delta V4.3-) Delta - 400 MHz- FT-NMR instrument liquid-state NMR as well as solid-state NMR measurement becomes possible. High-Resolution solid-state NMR measurement by techniques such as cross-polarization-magic angle spinning (CP/MAS) method becomes possible when you add optional attachments, such as a probe for the solid-state measurement, to the standard composition of JNM-ECA/ECX series. Multinuclear observation (31P-15N) measurement and measurement under variable temperature (VT) are also possible in this system.

3. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

Agilent’s 7900 ICP-MS has a robust plasma and optional Ultra High Matrix Introduction (UHMI) technology that enable the user to routinely measure samples containing up to 25% total dissolved solids (TDS)—100 times higher than the traditional matrix limit for ICP-MS.

Widest dynamic range—the new orthogonal detector system (ODS) delivers up to 11 orders of magnitude...
dynamic range from sub-ppt to percent-level concentrations, enabling you to measure trace elements and majors in the same run. Faster analysis of transient signals—with 10,000 separate measurements per second, the 7900 ICP-MS provides short integration times for accurate analysis of transient signals.

4. MALDI-TOF/TOF Mass Spectrometry

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) emerged as an effective analytical tool use for studying the molecular mass determination, protein identification & characterization, identification of post translational modification, terminal sequencing and more other applications. In general, molecules in the gas phase (or species desorbed from a condensed phase) are ionized, and the ions are then accelerated by an electric field and separated on the basis of their mass-to-charge ratio (m/z) and further detected. A time-of-flight (TOF) mass spectrometer separates ions with identical kinetic energy but different m/z, since lighter ions travel faster than heavier ones. A mass spectrum is a chromatogram presenting the signal intensity (y-axis) versus m/z (x-axis). Interpretation of the fragmentation patterns and isotopic peaks can provide valuable clues for the structure determination of organic molecules. MALDI provides a ‘soft’ ionization source that prevents decomposition of fragile biomolecules, producing primarily singly charged, intact protein ions. The ions produced with the MALDI technique are analyzed using a time-of-flight (TOF) mass spectrometer, which is characterized by a high ion throughput and therefore high sensitivity.

5. Micro Raman Spectroscope

Micro-Raman spectrometer, inVia reflex Raman spectroscopy system combined with research grade Leica microscope allows scatter, line, area mapping and confocal depth profiling. Renishaw Raman can be used with two types of lasers- 514nm and 785nm with different magnification lenses. Argon Ion laser 514 nm 20 MW-5000 hours usage. Renishaw Diode laser, solid state Near IR -3000 hour.
6. Electrospray Ionization- Liquid Chromatography (ESI-LC)-Mass Spectrometry

Electrospray ionization (ESI) is a soft ionization technique to examine proteins using MS and MS/MS. In ESI, charged droplets are produced by passing a solubilized sample through a high voltage needle at atmospheric pressure. Desolvation occurs prior to entrance into the high vacuum of the mass spectrometer. This approach is often coupled with a chromatographic system, typically reverse phase chromatography or capillary electrophoresis, allowing analysis of very complex samples. ESI typically induces a range of charge states. LC-MS is a powerful technique used for many applications which has very high sensitivity and selectivity.

The ESI-MS facility at KSBS, IIT Delhi is a Bruker Electrospray Ionization instrument-amaZon SL Dual Funnel Iontrap bench top with a mass accuracy of 0.1Da. It is connected to a nano-liquid chromatography setup- EASY nLC-II with C18 column to fractionate sample containing mixture of peptides. There is a facility of direct probe injection as well as sample injection through nLC. This instrument is capable of performing analysis of intact proteins, mixtures of proteins and peptides, biomarker studies, identification of post translational modifications, and many more applications.

7. FTIR(Fourier Transform Infrared Spectrometer)

The Thermo Scientific™ Nicolet™ iS™50 FT-IR spectrometer alleviates many of these productivity concerns by automating setup of the FT-IR system for multi-spectral range experiments (>20,000 cm⁻¹ to 80 cm⁻¹) and for integrating techniques like FT-Raman, near-IR and mid/far-IR attenuated total reflectance (ATR) into a single workflow.
8. **Field Emission Scanning Electron Microscope with EDS**

The JEOL JSM-7800F Prime is a high resolution SEM that allows for imaging with a spatial resolution down to 0.5 nm. It is especially useful for surface sensitive analysis and analysis of beam sensitive materials as the landing energy of the electrons can be as low as 10 V. The JSM-7800F Prime is equipped with a large specimen chamber that accommodates a wide variety of detectors simultaneously, including: multiple EDS, EBSD, WDS, BSE. Oxford make EDS and EBSD. The EDS consists LN2 free SDD X-max 80 EDS detector enables detection of elements under high resolution. The new Gentle Beam Super High mode (GBSH) enables a bias voltage of up to 5 kV to be applied to the specimen stage, which decreases charging on nonconductive specimens, improves spot size at low kV, enhances surface topography, and enables high resolution imaging at extremely low voltages. Applications include imaging and analysis of metals, magnetic materials, semiconductors, ceramics, medical devices, and biological specimens.

9. **Atomic Force Microscope (AFM)**

Asylum Research MFP3D-SA is a very versatile atomic force microscope, suitable for use with a wide range of samples and features a vast array of modes. It has a z-range of 40 um (extended head model) and an ‘x’ and ‘y’ movement of up to 90 um in a closed loop scan. The microscope differs from most others available on the market due to using separate piezos for each plane. This allows for the use of nano-position sensors, minimising hysteresis and creep, whilst also ensuring flat scans. The MFP-3D is able to image conductive, semiconductive and insulating samples in both air and liquid environments. The head can be adjusted to fit a wide range of sample sizes and both top down and bottom up illumination of samples is possible. Some Features of Asylum Research MFP3D-SA:

- High Precision 3D Motion with Closed - Loop sensors on all three axes.
• Z axis: >15µm range; 0.25nm resolution
• X&Y axes: 90µm range; 0.5nm resolution
• Molecular Scale Force Measurements with up to 384x384 array of Force Curves
• Integrated with inverted optical microscope: Olympus IX71
• Heater controller with petri-dish heater which can heat up to 45°C.

C. OTHER FACILITIES

1. Liquid Nitrogen Facility
The Liquid Nitrogen (LN2) facility is involved in-house production of LN2 and its supply to various experimental laboratories of the institute. The current LN2 plant was commissioned by M/s. Stirling Cryogenics & Refrigeration in 1989. The original Model StirlIN-1 was then upgraded in 2006. This increased its production capacity from 6 liters/hr to 10 liters/hr. The plant is able to meet the current Institute’s demand of approximate 1500 liters per month.

2. Glass Blowing Workshop
Various jobs can be undertaken in the workshop are: ¬ ‘T’ joints to Mercury Diffusion pumps. Special glass apparatus like McLeod Gauge, B.E.T apparatus, Dewar Flasks, Distillation Unit, Various types of viscometers, All type of Condensers, Multi Necked Flasks, Various types of Adopters and setting of vacuum lines can be possible.

3. 3D Printing
RAISE 3D N2 is a 3D Printer that works on Fused Deposition Modelling (FDM) technology. FDM is a filament-based technology where a temperature-controlled head extrudes a thermoplastic material layer by layer onto a build platform. The build volume is 12in x 12in x 12in (305mm x 305mm x 305mm). The machine has up to 10 micron Z resolution and 12.5 micron X/Y step size to achieve the best print quality and accuracy.
4. Laser Cutting

The laser cutting machine (Epilog Helix 24 Laser) provides a wide range of opportunities and possibilities. The Helix’s generous 24” x 18” (610 mm x 457 mm) engraving area will allow you to engrave multiple pieces. The laser power is 45W and the maximum thickness of the acrylic sheets that can be cut is 10mm.

D. CRF SONIPAT FACILITIES

Facility Coordinator: Dr. Atul Kumar Singh

Building Specifications:

- Total Built up Area is 20,560 Square feet.
- Entire building is divided into 4 clusters; acting as self-sustained independent blocks.
- Each cluster is having 4 labs (520 Sq. ft.; 280 Sq. ft. and 2 labs of 300 Sq. ft. along with utility area of 400 Sq. ft.

Following facilities are operational at present:

1. Physical Property Measurement System (PPMS)

This CFMS is made up of a cryogen free Superconducting magnetic with an integrated Variable Temperature Insert (VTI) surrounding the sample exchange chamber. Helium gas is continuously circulated in VTI by an oil free pump (VTI pump).

Specifications:

- \(T \)- range: 1.6 – 400 K
- Max. magnetic field: \(\pm 14 \) T
- Sample nature: Powder, pellet, thin film, single crystal
Measurement options:
- Vibrating Sample Magnetometer (VSM)
- DC resistivity
- AC resistivity
- Thermal Transport
- Multisample measurements
- High impedance measurements
- AC susceptibility
- Hall coefficient measurements
- Heat capacity
- Seebeck coefficient measurements
- Leadless Chip Carrier (LCC 20) measurements

2. **X-Ray Diffraction (XRD) Specifications:**
- Goniometer Radius 240m
- Range (depending on accessories) \(-111^\circ < 2\theta < 168^\circ\)
- Smallest increment: 0.0001°
- Angular reproducibility: < 0.0002°
- X-Ray Source Cu
- 2D detector
- Domed Cooling Stage
- Low temperature Cryostat

3. **Small Angle X-Ray Scattering (SAXS)**
Features:
- X-Ray with high spectral purity
- Powerful MetalJet microfocus
- 1M 2D Eiger HPC Detector
- Automated scatterless beam collimation
- Self alignment with X-Ray beam

Applications: Particles Size, Density, Porosity, Pore size, Shape
Temperature range: -150 °C to +600 °C
Atmosphere: Air, Vacuum, Inert gas, Humidity

![Figure 2: SAXS Instrument](image)

![Figure 23: XRD Instrument](image)
7.2 Industrial Research and Development Unit (IRD)

The Indian Institute of Technology Delhi lays a strong emphasis on sponsored research and industrial interaction. The Industrial Research & Development (IRD) was specifically set up in the institute to provide specialised administrative and managerial support for the operation of sponsored research projects, consultancy jobs and other related research and development activities. Over the years, the institute has set up many modern laboratories and supporting infrastructure through these projects. The institute has given due emphasis to jobs of varied nature like trouble-shooting, product and process development, design checks and investigation of problems of direct relevance to the needs of the country through time-bound sponsored research projects and consultancy projects. The institute is actively involved in collaborative programmes with national and international organisations and universities. The IRD unit manages these projects and always looks forward to supporting projects of national importance that are also socially useful.

IRD RESEARCH FUNDING - TRENDS & STATISTICS

Sponsored Projects & Consultancy Jobs

Total 595 sponsored projects and consultancies with total funding of ₹240.29 Crores were undertaken through IRD, Foundation for Innovation and Technology Transfer (FITT) and Technology-Innovation Hub (TIH) Units, in the financial year 2020-21.

The IRD runs many schemes to encourage research and development among the faculty and students of IIT Delhi.

IRD Support to Faculty Members within the Institute

- **Research Grant for New Faculty Member:** The IRD provides a one-time grant of Rupees One Lac to each new faculty member who joins the institute. This grant has been given to forty-one new faculty members during the Financial Year 2020-2021 to initiate new projects.

- **Equipment Matching Grant:** The Equipment Matching Grant allows a new faculty to purchase equipment sanctioned under a project. Faculty can avail of the grant within two years of joining, with a ceiling of ₹30 Lacs or an amount equivalent to the funds sanctioned by the funding agency for the equipment under the project, whichever is lower. Equipment Matching Grants to the tune of ₹459 Lacs have been sanctioned to twenty-three new faculty members during the financial year 2020-21.

- **Sponsored Research Enhancement Actions (SREA):** Under SREA (1, 2 & 3) schemes, the IRD provides support to senior staff to facilitate and enhance sponsored research activities, both in formulating/writing research project proposals and coordinating research projects.

 SREA 1: Assistance for formulating/writing major research project proposals involving multiple faculty
members from IIT Delhi or involving multiple Institutes with IIT Delhi as the Coordinating Institute. The funds proposed for IIT Delhi should be ₹5.0 Crore or more. The IRD also provides financial assistance for hiring a Project Consultant for two months during project preparation.

SREA 2: For a sponsored research project with a funding of ₹2.5 - 5.0 Crores, the IRD provides top-up funds required for hiring one Principle Project Officer for the project duration.

SREA 3: For a sponsored research project with a funding of ₹5.0 Crores or more, the IRD provides top-up funds required for hiring one Project Consultant for the project duration.

Project Administrative Assistants (PAA)

IRD Unit also implemented a scheme of providing Project Administrative Assistant (PAA) to a group of five PIs who have ongoing projects. These PAAs are assigned for secretarial support to the PIs in project-related administrative and office work. At present more than 100 Principal Investigators (PIs) are utilising the facility. Further, one extra PAA is also allocated to departments or centres on request. The department or the centre can assign the PAA to a newly joined faculty who do not have any project.

IRD SCHEMES FOR FACULTY MEMBERS

Faculty Interdisciplinary Research Project (FIRP)

- The FIRP scheme aims to enhance interdisciplinary and collaborative research within the institute. Selected projects are given an initial grant of ₹10 Lacs for a duration of two years. It is expected that the joint research team will submit at least one research project to an external funding agency on the completion of the first year. The IRD has funded a total of 108 FIRP projects so far.

In the previous calls, eighty-six projects were sanctioned under the FIRP 2016 and 2017. Key outcomes from these projects are:

- Total 122 research papers have been published in high impact journals/conferences.
- Eleven patents have been processed for filing through FITT
- Three technologies have been transferred.
- FIRP projects have received four academic/research awards.

The IRD had made an initial expenditure of about ₹5.46 Cr for FIRP Calls-2016 & 2017, while about ₹34 Cr has been generated from the ten externally funded projects as a spinoff from the leads generated through FIRP projects. Twenty-one projects are currently under review.

In the current period of the COVID pandemic, a short term FIRP on COVID-19 research was launched. Five short-term projects having high potential leads on Covid-19 related research were supported with ₹2.5 Lakh for one year. An RT-PCR based probe-free detection kit has been developed under this initiative. The product COROSURE has also been commercialised.
A fast-track FIRP on Locust Control Initiative 2 project proposals have been funded with ₹5 Lakh for one year under fast track research on long-term solutions for locust invasion in the country.

After three successful calls of FIRP, FIRP Call-2020 was reteased to encourage and facilitate research interactions between the faculty members of sciences departments with the engineering and other disciplines. The IRD supported twenty-two joint project proposals under this call.

Multi-Institutional Faculty Interdisciplinary Research Project (MFIRP): In order to meet current global research challenges, IRD has initiated the multi-institute faculty interdisciplinary projects (MFIRP) with national and international institutions of eminence.

Under the scheme, funding is provided for joint MFIRP projects to a team of faculty members from two or more institutions. There will be at least two PIs (one from each institute), and the total grant will be ₹20 Lakhs for two years, equally shared by IIT Delhi and the partnering institutions.

IRD SCHEMES FOR STUDENTS

Student Startup Action & Discover & Learn (1-2-3-4) Schemes: In enhance research aptitude among undergraduate & graduate students and promote learning-by-research, the IRD launched the Student Startup Action & Discover & Learn (1-2-3-4) schemes from the year 2016 onwards. Since then, eighteen IRD Student Startup Action projects involving about forty students and thirty-two Discover & Learn (1-2-3-4) projects involving about 130 students are awarded in various research areas of national interest.

IRD Students Scheme of Call 2020: This year’s sanctioned projects include ‘On-line, Wide-range, Low-cost Sensor for Biomass Concentration’, ‘Control and Data Acquisition for Cold Atom Quantum Technology’, ‘Managing Safety at construction sites using digital technology’, ‘Develop an application for semantic tagging of video sequences for stochastic modelling of reactive systems’ and ‘Digitization in Healthcare’.

Under the Student Startup Action scheme, three projects ‘Blockchain implementation of Health Electronic Records (HER)’, ‘Spirited AI’, and ‘Develop energy-efficient permanent magnets and switched reluctance motors for two-wheeler electronic vehicles (EVs)’ projects have been sanctioned for IRD support.

Significant Achievements from IRD Student Startup Projects

- The Student Startup projects led to Start-up companies which are enlisted below:
 - Suxma System Pvt. Ltd. based on Mastitis Detector Device - developed under the scheme. (Faculty Mentor: Prof. Subrata Kar, Department of Electrical Engineering)
 - Flexmov Clutch Startup based on improved design of clutches (assistive device). (Faculty Mentor: Prof. Jitendra Prasad Khatiat, Department of Mechanical Engineering)
 - CYRAN (Cyber Raksha with Advanced Nanoelectronics) - the AI-based Solutions incorporated with MCA, Govt. of India (Faculty Mentorship: Prof. Manan Suri, Department of Electrical Engineering)
• Silov Solutions Pvt. Ltd. based on smart DC home, DC-DC converters with an in-built solar charge controller (Faculty Mentorship: Prof. Sukumar Mishra, Department of Electrical Engineering)

• VECROS Technologies Private Limited on developing drones with server-based cloud app to monitor and scale the drone operations (Faculty Mentorship: Prof. Shubhendu Basin, Dept. of Electrical Engineering).

✓ Under PIN: An ERP-CRM Software for Academic Research Laboratories (Faculty Mentorship: Prof. Madhusudhan Singh; Department of Electrical Engineering and & Prof. Ramamohan, Department of Mechanical Engineering).

✓ Designed and developed a laboratory-scale prototype of the solar PV based charging system under the mentorship of Prof. Bhim Singh; Department of Electrical Engineering).

Summer Undergraduate Research Award (SURA): The objective of the SURA scheme is to encourage research & development activities among undergraduate students. The students are encouraged to take the initiative in identifying, investigations and analysing research problems and formulating solutions.

Assistantships/Fellowships: The IRD provides support in the form of Gap Period Assistantship for both M.Tech./M.S.(R) and Ph.D. students on completion of the projects from which they were drawing their fellowships/assistantships. The M.Tech./M.S.(R) students are supported for a maximum gap period of six months, while Ph.D. students get support for a maximum gap period of one year. Total twenty students were supported in 2020-21 under this scheme.

IRD Early-Doc Fellowships: are provided to Ph.D. students after the successful completion of the Ph.D. viva-voce examination. The main objective of the fellowship is to support the scholars in manuscript writing etc. A monthly fellowship of ₹40,000/- per month (including HRA) is given for a maximum period of three months, w.e.f. the date of their Ph.D. viva-voce examination. Eighty-one IRD Early-Doc Fellowships were approved during 2020-2021.

Research Excellence Travel Award (RETA): Highly meritorious research scholars (full-time as well as part-time) are awarded Research Excellence Travel Award (RETA) amounting to ₹1,50,000/- from IRD promotional funds. RETA can be used only for a single conference travel. Total nine students have been awarded for RETA this year.

Research Scholar Travel Award (RSTA): All the Research scholars are awarded a travel grant under the Research Scholar Travel Award (RSTA) up to a maximum of ₹80,000/- from the IRD Research Promotion Fund, over and above an initial grant of ₹20,000/- provided by the institute. A total of 158 students have been granted RSTA this year.

Continuation of Academic Cooperation through MoU signed between IIT Delhi and NYCU-Taiwan.
Academic cooperation continued between the two institutions. Following are the highlights for the year 2020:

1. The National Chiao Tung University (NCTU), Taiwan and the National Yang Ming University (NYMU), Taiwan, merged to become a new entity National Yang Ming Chiao Tung University (NYCU).

2. The coordination office at IIT Delhi became fully functional.

3. Eighteen Joint Projects are operational under the NYCU-IIT Delhi Collaborative Project proposal MFIRP scheme.

4. Seventeen Joint Ph.D students are pursuing coursework at the respective institutions.

5. The NCTU-IIT Delhi Joint Webinar was organised to monitor the progress of the Joint-Doctoral Programme (JDP) students’ progress.

NATIONAL RESEARCH PROJECT

Uchhatar Avishkar Yojana (UAY): Twelve UAY projects, including nine from Phase I and three from Phase II, are administratively managed by the IRD. Out of the nine Phase I projects, seven have been completed, and two are in progress with tenure extension. Out of the three projects of phase II, one project is completed, and two are in progress. These projects received fifty per cent funding from the Ministry of Human Resource Development (MHRD). The remaining part is funded equally by the industry and another partnering ministry of Government of India (GoI). The implementation of these projects is being managed by the IRD.

Impacting Research Innovation and Technology (IMPRINT): Twenty IMPRINT projects, including twelve IMPRINT Scheme-1 projects and eight IMPRINT Scheme-2 projects, are administratively managed by the IRD. Out of the twelve projects of IMPRINT Scheme-I, three are completed. These projects are funded by the MHRD, DST-SERB, DRDO or ICMR and the respective ministry. The IRD conducted project review, enabled project tenure extension, and facilitated the preparation and submission of expenditure statements and utilisation certificates.

Grand Challenge Projects: In 2018, IRD initiated funding the Grand Challenge projects to establish new research platforms to strengthen the interface between the institute’s R&D activities and some societal challenges faced by the country. Four projects, in the areas of Air Pollution Control, Electric Vehicles, MBE growth for 2D materials for sensors and optoelectronic devices and antibacterial diagnostic solutions have been funded. An annual review of the project progress was done by external experts on March 5, 2021. The experts appreciated the efforts of all Principal Investigators and their teams for selecting relevant problems and handling them effectively. The output of these projects was rated ‘Very Good.’

Similarly, under Grand Challenge – 2020, the IRD further supported in-house inter-disciplinary research between the Humanities and Social Sciences groups of the Institute to interface with Engineering and Sciences. Total eight competitive research projects have been funded under the scheme for period of 3 to 5 years.

The Scheme for Promotion of Academic and Research Collaboration (SPARC) programme was initiated by the Ministry of Education (MoE) for research collaboration and academic exchanges between institutions in India and
other advanced nations. The Indian Institute of Technology Kharagpur is the nodal implementing agency for the programme.

In the first call (2018-19), IIT Delhi received the sanction and financial support for implementing sixteen projects involving fourteen faculty members from nine departments/centres. There are under implementation through IRD.

In the second phase, more than 60 proposals have been submitted by the faculty members against the call July/August 2019. The results of the evaluation of these proposals are awaited.

CENTRE FOR EXCELLENCE (CoEs)

Various Centres of Excellence funded by government organisations and industries on specific research areas for demand-driven innovations and translational research have been created in the institute through IRD. Currently, 20 CoEs are actively functioning to pursue focused research in specific areas.

In the current period, the following new CoEs have been initiated:

NHAI Centre of Excellence for Advanced Data Management System (ADMS) for Highways was established in September 2020 by the National Highways Authority of India (NHAI), New Delhi. The CoE will work on four thematic research areas viz. Network Traffic Demand and Incident Management, Highway Safety, Highway pavement management system, and Project Management. Specific research projects have been sponsored in each thematic area. Five research projects are presently operational at the centre.

DAKSH Centre of Excellence for Law and Technology was established in October 2020 with DAKSH Society, Bengaluru. The centre aims to carry out the research on various aspects of the legal system viz, Operation Research-based analysis of judicial data, technology, law and improving the effectiveness of the legal and judiciary system. Presently, the centre is implementing three projects/consultancy activities.
The Centre of Excellence (CoE) on Personal Body Armour was inaugurated by Dr G. Satheesh Reddy, Secretary DDR&D and Chairman, DRDO, with Prof. V. Ramgopal Rao, Director IIT Delhi, on October 21, 2020. The creation of the CoE has been at the behest of NITI Aayog under the PMO initiative “Make in India – Personal Body Armour.”

Highlights (2020-21)

- Total 595 sponsored projects and consultancies with total funding of ₹240.29 Crores were undertaken through the IRD, the FITT and the TIH Units.
- New Faculty grant has been given to 41 new faculty members (₹41 lacs).
- The Equipment Matching grant has been given to 23 faculty members (₹4.59 crores).
- Under Faculty Interdisciplinary Research Project (FIRP) scheme, 29 projects were selected for IRD support this year.
- Under the Multi-institutional Faculty Interdisciplinary Research Project (MFIRP) scheme, 19 projects were selected for IRD support this year.
- Student Startup and Discover & Learn schemes have been sanctioned this year to 8 students.
- Under the Research Excellence Travel Award (RETA), 9 students have been granted RETA this year.
- Under the Research Scholar Travel Award (RSTA), 158 students have been granted RSTA this year.
- Total 69 Project Administrative Assistants (PAA) have been attached to faculty members of the institute this year.

COVID research @IITD: The details on Covid research @ IITD are available on the dynamic website (https://home.iitd.ac.in/covid19-response.php) created by the Unit.

7.3 Central Workshop

Central Workshop is one of the pivoting units of the institute which teaches conceptually “how” a product comes to its present form by way of imparting core manufacturing education to all the first year students of IIT Delhi. It also provides product manufacturing support to entire institute community in general and undergraduate students in particular. More than 900 undergraduate students in their first year acquire hands-on manufacturing skills in the Central Workshop. The Central Workshop not only introduces art and science of manufacturing but also infuses confidence to take up product design and manufacturing activities in future. Central Workshop is also a place where B.Tech. students of Mechanical Engineering and B.Tech. students of Production & Industrial Engineering acquire training and knowledge in specialized areas of manufacturing like Metal Casting, Metal Forming, Metal Machining, Welding & Joining, CNC programming and 3D Printing, Plastic Product manufacturing etc. M.Tech. students of Production Engineering also use Central Workshop facilities for their practical classes in various courses as well as for project and research work.
The Central Workshop is fully equipped with latest power tools, equipments and facilities in all areas of manufacturing technologies. It also caters to the fabrication needs of students doing product design & manufacturing courses, minor projects, B.Tech. project, Master’s thesis and Doctoral research. Large number of students use this facility to build products and compete at national and international level product building competitions like Formula student car, mini Baja, Robocon etc. The facility can also be used by external agencies for their manufacturing and training needs during the vacation period.

Central Workshop has undertaken efforts to reorganize, modernize and prepare for continuously changing global manufacturing scenario. Efforts are also on to prepare students for a broader view of manufacturing which involves planning and deploying optimum ways to transform raw material into goods by integration of people, capital, processes, systems and enterprises to deliver products of value to the society.

A new ‘CNC and 3D Printing Lab’ has been added in 2013-14 to imbibe product realization through computer generated geometries. A rapid prototype model can also be visualized by use of state of art 3D Printing technology in this new shop of Central Workshop. Laser cutting facility has also been added recently.

7.4 Nanoscale Research Facility (NRF)

The Nanoscale Research Facility (NRF) has been established with the support from Ministry of Electronics and Information Technology (MeitY) and IIT Delhi to support the interdisciplinary research in the area of nanoscience and nanotechnology. The facility consists of class 100/1000 clean rooms with several state of art fabrication/thin film deposition instruments and characterization facilities. The research programme of NRF has been focused on both thematic areas of national importance and basic research with importance to the development of nanoscience and nanotechnology. More than 50 faculty members from different departments/centers of IIT Delhi are participating in cutting edge research at Nanoscale Research Facility. Using the facilities at NRF, several deliverables related with nanophotonics, nanomagnetics, nanomechanics, nanophotovoltaics, nanoelectronics and biosensing have been successfully demonstrated. The current programme of NRF is to develop nanoscale devices for health, agriculture, security and energy sectors. The emphasis is to develop micro/nanoscale devices which can be given to users. It is also planned to explore new concepts/ strategies for developing future potential nanoscale devices.

Objective of the NRF

- To design, build and demonstrate nanoscale structure & devices.
- To investigate new concepts and fundamentals for nanoscale processes.
- To run and maintain different fabrication and characterization facilities.
- To provide exposure to students to the area of nanotechnology.

Facilities available

NRF has adequate characterization lab facilities with more than 20 equipments like XRD, SEM, RAMAN, PL, AFM,
UV-Vis, FTIR, DLS, GCMS, HPLC, AGM, Semiconductors characterizations and others. There is a fabrication lab with EBL, Maskless lithography, Mask aligner and others. These facilities can be accessed through online booking after registration to NRF website (nano.iitd.ac.in). Presently more than 1000 users (faculty members and students of different departments and centres) of IIT Delhi are registered for the access to these facilities. These facilities are also open to the other institutes and industries across the country.

Seminars, visitors and training

Seminars, visitors and training to the students in the area of use of clean room and various facilities are integrated regular feature of NRF. Ph.D./M.Tech./M.Sc./B.Tech. students are quite often given exposure to these facilities at NRF through visits and demonstrations and many of them are given hands on training to run the fabrication and characterization facilities. Every week a talk for clean room and clean room entry test is also conducted. The presence of NRF has facilitated several collaborating projects with foreign countries such as UK, Japan, Singapore, Germany, Norway etc. Time to time, delegations and distinguish scientists from national and international universities have been visiting NRF.

7.5 Office of Carrer Services (OCSs)

OCS interacts actively with industrial, management and research organisations in the country with the dual aim of ensuring that the students are given adequate technical exposure/industrial training and subsequently enabling them to get employment in organisations.

Internship

Students of B.Tech. and Dual Degree Programmes, can opt for practical training/internship during summer vacations/during semesters in partial fulfilment of their Design & Practical Experience (DPE) component requirements. OCS facilitates the placement of students in Industry and Research Laboratories for this purpose. Summer Internships for M.Des. students are also facilitated by OCS.

Placement

An active and dynamic programme of securing jobs for students graduating from the Institute is initiated by inviting industries of repute and other organisations to conduct interviews. Wide publicity of the academic and extra-curricular activities of Students is given to the organisations.

Organisations that have hitherto not participated in Training or Placement of the students are contacted actively.

Support Services

OCS organizes lectures for students to supplement the above information with special talks. Workshops are organized on various subjects such as: career counselling, interviews techniques and modes of communication.
7.6 Central Library

The IIT Delhi Library System comprises of a Central Library and about 32 Unit Libraries of departments, centres, schools, etc., that collectively support the teaching, research, and extension programmes of the institute. The Central Library is the early adapter of new and emerging technologies and provides state-of-the-art user support services which include; ICT based services using Baadal cloud, Video Library, E-Resources including E-Journals, E-Databases, E-Books, Computer and Networking Facilities, RFID Technology, Faculty Profiling System (IRINS), Library App for Single Window Search, Discovery Service, eNewsClipping Service, Ask the Librarian, Research Support Services and Outreach Programs, Institutional Repository, Remote Login Facility and as the National Resource Centre for Library and Information Science of Ministry of Education, Govt. of India (ARPIT), etc.

All the students, faculty, and staff of the institute are entitled to make use of the Library facilities. Similarly, industrial establishments can avail the Library services on taking corporate membership of the library. Retired teaching and non-teaching staff can also avail of the Library facilities. Anybody by being Institute student or staff or faculty automatically becomes eligible to avail library facilities, but to make use of the Issue/Return facility, one needs to get the smart card/ID card tagged from the library by completing some formalities from the Front Desk/Circulation Counter on the first floor. The library currently has about 10,000 members and with a seating capacity of about 1,000.

The library remains open throughout the year, barring few declared holidays. The book stack area on the 1st floor and the Ground floor are open from 9:00 AM to 9:00 PM (Weekdays), and 10:00 AM to 6:30 PM (Weekends & Holidays). Reading Area remains open 24x7 hrs in normal situations.

The Central Library has substantial collections pertaining to physical sciences, engineering, technology, biotechnology, computer and information technology, social sciences, management, etc. It is equipped with a video viewing facility and has a sizeable collection of CDs of video lectures, kept in the Computer Applications Division/Lab on the Ground floor. The library maintains a separate reference collection consisting of encyclopaedias, dictionaries, handbooks, technical data, almanacs, atlases, bibliographies, in print apart from online resources. It has built up a good collection of books in Hindi, which include books on various subjects being taught and researched at the institute as well as general reading books.

The institute has access to over 60,000 full-text electronic journals/proceedings/standards and over 20 databases from reputed publishers. The institute has a collection of eBooks (including e-textbooks) from different Indian and foreign publishers. The institute also subscribes to Grammarly Software for English Correction. Almost all the electronic journals/proceedings/standards/eBooks/databases are accessible remotely using the Single Sign-On (SSO)/Off-Campus system based on Shibboleth. The library has a dedicated page (https://idp.iitd.ac.in) for accessing these resources remotely from outside the campus using Institute Login and Password/Kerberos. A
detailed guide and list of resources accessible from your places of residence, outside of campus is available at: https://idp.iitd.ac.in

The Book Bank holds multiple copies of selected textbooks for making these available to the students for the entire period of a semester, free of cost. Students can draw up to six books over and above for the whole semester.

The Central Library also has a well-equipped computer lab facility with an internet connection for users to access electronic resources and for their study and research work. This lab is also being used for hosting trainings and workshops.

The Library has been using RFID technology from 2010, which facilitates the users: self-check-out of books, self-check-in (book drop), to control theft, to find misplaced reading material, sorting, inventory accuracy, stock verification procedures, security control, video surveillance, people counter, etc.

Another important aspect of the library is its Online Public Access Catalogue, through which you can check the availability of the printed books and your record like Issue/Return/Overdue Books/Fine, etc. For every transaction, an automatic email is sent on the registered email to stop misuse of your library card. The Web OPAC (Book Search) is accessible at: http://libcat.iitd.ac.in:8080/opac. Extended Abstracts of the Theses have also been made accessible through Library’s DSpace based Institutional Repository, which is available at: http://eprint.iitd.ac.in. One can see the Profiles of all the Faculty Members at: http://iitd.irins.org. The Library Mobile App is very useful and can be installed on Android or Apple devices by searching by the name, Single Window Search for IIT Delhi e-Resources: https://play.google.com/store/apps/details?id=com.iitdelhieds&hl=en.

The library also arranges Printed Books or Journal Articles from other Libraries which are not available in IIT Delhi through an Inter-Library Loan, request for the same may be sent through email or through Library Circulation Counter (DELNET). If you are interested in recommending a book for the library, whether you are a student or faculty, you can do so by using Offline Form or Online Form available at: https://library.iitd.ac.in/book-recommendation. The library also hosts regular Workshops/Training for the Users and uploads the Videos/PPTs on its site for reference at: https://library.iitd.ac.in/workshop-recording.

The library has a very good Photocopying, Scanning, Digital Printing, and Binding Facility within its premises through an external vendor on a payment basis.

For further information about the Central Library and its Services, you may visit: https://library.iitd.ac.in or download the Handbook https://library.iitd.ac.in/pdf/LibraryHandbook.pdf or explore the short Orientation Video: https://www.youtube.com/watch?v=XqTnzmJvPOI&t=1s or Contact at: hodlibrary@admin.iitd.ac.in, Phone: 011-26597017.
8. ADMINISTRATIVE STRUCTURE

THE VISITOR
Shri Ram Nath Kovind (Hon’ble President of India)

CHAIRMAN, BOARD OF GOVERNORS
Dr. R. Chidambaram

DIRECTOR
Prof. V. Ramgopal Rao

DEPUTY DIRECTORS
Prof. S.G. Deshmukh (Operations) and Prof. Ashok K. Ganguli (Strategy and Planning)

Deans
Prof. Shantanu Roy : Academics
Prof. Sudipto Mukherjee : Faculty
Prof. Sunil Kumar Khare : Research & Development
Prof. Naveen Garg : Alumni Affairs & Intl. Programmes
Prof. Arvind K. Neema : Student Affairs
Prof. J.T. Shahu : Infrastructure (Officiating)
Prof. P.V. Rao : Planning
Prof. Anurag Singh Rathore : Corporate Relations

Associate Deans
Prof. Anupam Shukla : Academics (Curriculum)
Prof. K. Sreenadh : Academics (PG Research)
Prof. Pritha Chandra (Ms.) : Academics (ONI)
Prof. Subodh Kumar : Faculty
Prof. Sukumar Mishra : Research & Development
Prof. Pramit K. Chowdhury : Students Events
Prof. Deepti Gupta (Ms.) : Hostel Management
Prof. Reetika Khera (Ms.) : Student Welfare
Prof. Abhijit R. Abhyankar : Infrastructure (Electrical)
Prof. J.T. Shahu : Infrastructure (Renovation)
Prof. B. Premachandran : Infrastructure (Maintenance)

REGISTRAR
Dr. Deepika Bhaskar (Ms.)
THE SENATE

V. Ramgopal Rao, Chairperson
(Director)

Deputy Directors
S.G. Deshmukh (Operations)
Ashok K. Ganguli (Stgy. & Planning)

All Professors (or equivalent)
Shantanu Roy
K.C. Iyer
S.K. Khare
Sudipto Mukherjee
Arvind K. Nema
Naveen Garg
P.V. Rao
Anurag Singh Rathore
Sukumar Mishra
Pramit K. Chowdhury
Deepti Gupta (Ms.)
Reetika Khera (Ms.)
Anupam Shukla
K. Sreenadh
Pritha Chandra (Ms.)
Abhijit R. Abhyankar
J.T. Shahu
B. Premachandran
Subodh Kumar
Sanjeev Sanghi
S.V. Veeravalli
Anupam Dewan
Santosh Kapuria
B.P. Patel
Maloy Kumar Singha
Puneet Mahajan
D. Sundar
Sunil Nath
Prashant Mishra
T.R. Sreekrishnan
Atul Narang
Shilpi Sharma
K.K. Pant
A.N. Bhaskarwar
A.K. Saroha
Vivek Vitthal Buwa
Anil Verma
Rajesh Khanna
Sreedevi Upadhyayula (Ms.)
Sudip Kumar Pattanayek
Suddhasatwa Basu (on lien)
Anil Jacob Elias
Ravi Shankar
Jai Deo Singh
D.K. Bandhopadhyay
Nalin Pant
Siddharth Pandey
N.D. Kurur
N.G. Ramesh
V. Haridas
Shashank Deep
Sameer Sapra
S. Nagendran
Nidhi Jain (Ms.)
A Ramanan
G.V. Ramana
Ashok Gupta
Alok Madan
N.K. Garg
A.K. Jain
A.K. Keshari
Geetam Tiwari (Ms.)
V.R. Gunturi
B.R. Chahar
Rakesh Khosa
R. Ayothiraman
Suresh Bhalla
R.R. Kalaga
Dev Raj Kaushal
B.J. Alappat
Neeraj Kumar Jha
Vasant Annasaheb Matsagar
Huzur Saran
S. Arun Kumar
Kolin Paul
Amit Kumar
Sandeep Sen
M. Balakrishnan
Mausam
S. Banerjee
Amitabha Bagchi
Jayadeva
M. Jagadesh Kumar
S.D. Joshi
Ranjan Kumar Mallik
Ranjan Bose
THE SENATE (contd.)

I.N. Kar
Santanu Chaudhury
M. Veerachary
Shankar Prakriya
Manav Bhatnagar
Brejesh Lall
Nilanjan Senroy
Sumantra Dutta Roy
Shouribrata Chatterjee
Angelie Multani (Ms.)
Sanjiv V.
Ravinder Kaur (Ms.)
Purnima Singh (Ms.)
Vibha Arora (Ms.)
Kamlesh Singh (Ms.)
Farhana Ibrahim (Ms.)
Jayan Jose Thomas
Seema Sharma (Ms.)
Sushil
Ravi Shankar
M.P. Gupta
Mahim Sagar
P. Vigneswara Ilavarsan
Surya Prakash Singh
Shveta Singh (Ms.)
Kanika Tandon Bhal (Ms.)
R.K. Sharma
Amitabha Tripathi
S.C.S. Rao
B.S. Panda

S. Kundu
N. Chatterjee
S. Dharmaraja
Aparna Mehra (Ms.)
Anoop Chawla
Sanjeev Jain
S.K. Saha
Anjan Ray
S.P. Singh
J.K. Dutt
Harish Hirani
M.R. Ravi
P.M.V. Subbarao
Naresh Bhatnagar
Raj Kumar Pandey
Ashish K. Darpe
Subodh V. Modak
Sujeet K. Sinha
S. Aravindan
Pulak Mohan Pandey
Prabal Talukdar
Sunil Jha
Sangeeta Kohli (Ms.)
Sudarsan Ghosh
Josemon Jacob
Rajesh Prasad
Bhabani Kumar Satapathy
Ratnamala Chatterjee (Ms.)
M.R. Shenoy
V. Ravishankar

Rajendra Singh
Neeraj Khare
Pankaj Srivastava
Sujeet Chaudhary
P. Senthikumaran
D.S. Mehta
Hitendra K. Malik
R.K. Varshney
Aloka Sinha (Ms.)
Varsha Banerjee (Ms.)
J.P. Singh
Santanu Ghosh
A.K. Shukla
Amruta Mishra (Ms.)
Sankalpa Ghosh
Amita Das (Ms.)
Gaddam Vijay Prakash
Joby Joseph
B.R. Mehta
R.S. Rengasamy
B.K. Behera
Bhuvanesh Gupta
R. Chattaopadhyay
R. Alagirusamy
Manjeet Jassal (Ms.)
Mangla Joshi (Ms.)
Apurba Das
Dipayan Das
Abhijit Majumdar
Sourabh Ghosh
THE SENATE (contd.)

Amit Rawal
Bhupendra Singh Butola
A.K. Agrawal
P.V. Madhusudhan Rao
Arun Kumar
Ananjan Basu
Monika Aggarwal (Ms.)
Krishna Mirle Achutarao
A.D. Rao
Manju Mohan (Ms.)
K.A. Subramanian
Vamsi Krishna Komarala
Amit Gupta
Naresh Bhatnagar
Harpal Singh
K. Narayanan
Prem Kumar Kalra
Pardeep K. Gupta
P.K. Babu
Sriram Hegde
Anushree Malik (Ms.)
Satyawati Sharma (Ms.)
V.K. Vijay
V.M. Chariar
Vivek Kumar
Subrat Kar
B.K. Panigrahi
Jayashree Bijwe
Rahul Garg
P.R. Panda

Swades De
Ambuj D. Sagar
James Gomes
Tapan Kumar Chaudhuri
Aditya Mittal
Chinmoy Sankar Dey
Amitabha Mukhopadhyay
Bishwajit Kundu

Three Educationists from Outside IIT Delhi
Gagandeep Kang
S.S.V. Ramakumar
Najma Akhtar

Librarian
Nabi Hasan

Head, Central Workshop
D. Ravi Kumar

One of the Wardens
Dinesh Kalyanasundaram (Nilgiri)

Chairman, Grades & Registration (UG/PG)
Rajiv K. Srivastava

Chairman, Time Table Committee (UG/PG)
Shaikh Z. Ahammad

Six Members of the Faculty for their special knowledge
Preeti Srivastava (Ms.)
Parag Singla
Harish Kumar
Vimlesh Pant
Manidipa Banerjee
Jayant Jain

Three Alumni Representatives
Rohit T. Koshy
Ravindra Kumar
Vishal Chadha

Four Student Representatives
Siddharth Choubay (Gen. Secy., SAC)
Kartikey Karnatak (Gen. Secy., CAIC)
Neha Ahlawat (Ms.) (M.Tech. Rep)
Ishita Bhatnagar (Ms.) (Research Scholar)

Registrar
Deepika Bhaskar (Ms.) (Secretary)
CHAIRPERSONS OF THE BOARDS

V. Ramgopal Rao
Board of Educational and Research Planning, Executive Committee of the Senate, Student Affairs Council

Sunil Khare
Industrial Research and Development Board

Shantanu Roy
Board for Academic Programmes

PRESIDENTS OF BOARDS FOR STUDENT ACTIVITIES

Samar Husain
Board for Students Publications (BSP)

Shashank Bishnoi
Board of Recreational and Creative Activities (BRCA)

Deep蒂 Gupta (Ms.)
Board of Hostel Management (BHM)
Assoc. Dean, (SA) (HM) Ex-Officio

Reetika Khera (Ms.)
Student Teacher Interaction Committee (STIC)
Vice-Chairperson
Assoc. Dean, (SA) (SW) Ex-Officio

Vivekanandan Perumal
Board for Sports Activities (BSA)
(President)

Reetika Khera (Ms.)
Board for Students Welfare (BSW)
(President)
Assoc. Dean, (SA) (SW) Ex-Officio

Pravin Ingole
Vice President, BSW & Coordinator, Student Mentorship Programme

Pushparaj Singh
Vice President, BSA

Sandeep Jha
Vice President, BRCA

LIBRARY

S.P. Singh
Chairman (ACL)

OTHERS

Farhana Ibrahim (Ms.)
Advisor, Foreign Students

Samrat Mukhopadhyay
Coordinator, NSS

R.K. Varshney
Advisor, SC/ST Students

Vikram Singh
Advisor, Persons with Disabilities (PwD) Students

Rajendra Singh Dhaka
Coordinator, NCC

Joby Joseph
Coordinator, SC/ST Preparatory Course
CHAIRPERSONS OF ACADEMIC ACTIVITIES

K. Narayanan
Head, CSC (Ex-Officio)
Computer User’s Committee (CUC)

Parag Singla
JEE Chairman (Advanced-2021)

S.P. Singh
Advisory Committee for Library (ACL)

B.S. Panda
Chairman (GATE/JAM-2021)

Reetika Khera (Ms.)
President, BSW (Ex-Officio)
Head, Students Counselling Services (SCS)

Neeraj Chaurasia
Hindi Cell (Head)

Rajeev K. Srivastava
Grades & Registration (UG & PG)

Shaikh Zia Ahammad
Time Table Committee (UG & PG)

COORDINATORS OF INTERDISCIPLINARY PROGRAMMES

M.Tech. Programmes

Kaushik Saha
Energy Science & Engineering (formerly CES)

S. Fatima (Ms.)
Centre for Automotive Research and Tribology (formerly ITMMEC)

Shouribrata Chatterjee
VLSI Design Tools & Technologies (EE/CS&E/CARE)

Gufran Sayeed Khan
Centre for Sensors, Instrumentation Cyber-Physical System Engineering (SeNSE)

Seshan Srirangarajan
Bharti School of Telecom Technology and Management (BSTTM)

M.Tech. and Research Programmes

Joyee Ghosh (Ms.)
Opto Electronics & Optical Communications (OEOC)

Amol Choudhary

Others

V.K. Vijay
Unnat Bharat Cell (UBC)
COORDINATORS OF CENTRAL FACILITIES
(Located in Departments/Centres)

Pravin P. Ingole
TEM CRF Ultra microtome
Cryo HRTEM
Glass Blowing Workshop
Liquid Nitrogen Facility
NMR 300, 400 & 500 MHz
(Liquid Probe)

Manidipa Banejee (Ms.)
Cryo HRTEM
Tempering
Magnetic Properties

Sayantan Paria
Liquid Nitrogen Facility
NMR 300, 400 & 500 MHz
(Liquid Probe)

Sujeet Chaudhury
SEM
TEM, CPSE
ICP-MS

S. Nagendran
Under SMITA Res. Lab.
(a) Micro Raman Spectroscope
(b) FE SEM + EDS
(c) NMR 400 MHz with
Liq. and solid probe
3D Printer & Laser cutting
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

J.P. Singh
SEM
TEM, CPSE
ICP-MS

Jayant Jain
Under SMITA Res. Lab.
(a) Micro Raman Spectroscope
(b) FE SEM + EDS
(c) NMR 400 MHz with
Liq. and solid probe
3D Printer & Laser cutting
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Arun Kumar
ICP-MS

Ashwini K. Agrawal
Under SMITA Res. Lab.
(a) Micro Raman Spectroscope
(b) FE SEM + EDS
(c) NMR 400 MHz with
Liq. and solid probe
3D Printer & Laser cutting
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

D. Ravi Kumar
Professor and Head

Sitikantha Roy
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

B.R. Mehta
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Bishwapjit Kundu
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Tapan K. Chaudhuri
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Archana Chugh (Ms.)
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Jayant Jain
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Naresh Bhatnagar
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Sreedevi Upadhyayula (Ms.)
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

B.R. Mehta
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Tapan K. Chaudhuri
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Archana Chugh (Ms.)
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Bishwapjit Kundu
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Shantanu Ghosh
SQUID Magnetometer
XRD

Bhanu Nandan
SAXS
Thermal Series

Ashwini K. Agarwal
Under SMITA Res. Lab.
(a) Micro Raman Spectroscope
(b) FE SEM + EDS
(c) NMR 400 MHz with
Liq. and solid probe
3D Printer & Laser cutting
AFM
Atom Probe Tomography
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD
Makers Space

Dinesh Kalyanasundaram
FTIR (Chemical Engineering)
HRTEM

P.K. Muduli
FTIR (Chemical Engineering)
HRTEM

CRF SONEPAT

Jayant Jain
Ion Milling
PPMS
Rheometer

Ratnamala Chatterjee (Ms.)
Ion Milling
PPMS
Rheometer

Rajiv Srivastava
Ion Milling
PPMS
Rheometer

CRF SONEPAT

Jayant Jain
Ion Milling
PPMS
Rheometer

Ratnamala Chatterjee (Ms.)
Ion Milling
PPMS
Rheometer

Rajiv Srivastava
Ion Milling
PPMS
Rheometer

CENTRAL WORKSHOP

D. Ravi Kumar
Professor and Head

CHAIRPERSONS OF OTHER COMMITTEES

V. Ramgopal Rao
(Director)
Official Language Implementation Committee

Shantanu Roy
Dean (Acad.)
Institute Lecture Series Committee

Shantanu Roy
Dean (Acad.)
Standing Committee for Convocation 2021

Shantanu Roy
Dean (Acad.)
Kendriya Vidyalaya

Shantanu Roy
Standing Committee for Convocation 2021

B.R. Mehta
Atom Probe Tomography
MALDI-MS
SAXS
SQUID Magnetometer
XRD

Bishwajit Kundu
Bio AFM
ESI-LC-MS
FACS
FESEM EDS Block - 4
Femto Second Laser Cutting System
FTIR (Chemical Engineering)
HRTEM
MALDI-MS
SQUID Magnetometer
XRD

Santanu Ghosh
SQUID Magnetometer
XRD

Bhanu Nandan
XRD

Rajiv Srivastava
Rheometer

Dinesh Kalyanasundaram
FTIR (Chemical Engineering)
HRTEM

S.G. Deshmukh
Managing Committee of the Benevolent Fund Scheme

P. V. Madhusudhan Rao
Employees Welfare Committee

A.K. Saroha
Chemical Engineering Committee

Ashok Gupta
Civil Engineering Committee

S.G. Deshmukh
Managing Committee of the Benevolent Fund Scheme

D.D. (Operations)
Staff Welfare Scheme
WARDENS OF HOSTELS
Sri Harsha Kota Kumaon
Dinesh Kalyanasundaram Nilgiri
Seshan Srirangarajan Aravali
Joyee Ghosh (Ms.) Kailash
Vivek Kumar Jwalamukhi
B. Sujin Babu Shivalik
M.C. Ramteke Karakoram
Prashanth Vangla Vindhyachal
D.R. Sahoo Nalanda / IP /
New Vindhyachal /
Transit Accommodation
Priyanka Kaushal (Ms.) Himadri
Hariprasad Kodamana Satpura
Sumedha Chakma Zanskar
N.M. Anoop Krishnan Girnar
Jayant Jain Udaigiri

HINDI CELL
Head Neeraj Kr. Chaurasia

STUDENT COUNSELLING SERVICE
Head Reetika Khera (Ms.)

ADMINISTRATIVE COMPUTERISATION SUPPORT SERVICE
Head K. Narayanan

CVC
Chief Vigilance Officer Anurag Sharma

RTI
Public Information Officer Shiv Prakash Yadav
First Appellate Authority Kalyan K. Bhattacharjee
Transparency Officer Deepika Bhaskar (Ms.)

HOSPITAL SERVICES
Head Lily Khosa (Ms.)

CENTRAL LIBRARY
Librarian & Head Nabi Hasan
Deputy Librarian Neeraj Kr. Chaurasia
Assistant Librarian (SS) Shankar B. Chavan
Assistant Librarian (SS) Vijay Kr. Verma
Assistant Librarian (SS) Vanita Khanchandani (Ms.)

PROFESSOR-IN-CHARGE OF DIFFERENT SECTIONS
Professor-in-Charge : J.T. Shahu
(Guest Houses & Halls)
Professor-in-Charge : Shaikh Z. Ahammad
(LHC)
Professor-in-Charge : Nalin Pant
(EHLS Unit)

OFFICE OF CAREER SERVICES (OCCs)
Head Anishya Madan (Ms.)
ADMINISTRATION

Deepika Bhaskar Registrar
M.K. Gulati Joint Registrar (CDN, Conference)
K.K. Bhattacharjee Joint Registrar (FAA, E-I, RTI, R&I, Travel Desk)
Atul Vyas Joint Registrar (Academics, Publication Cell)
Mohd. Shamim Deputy Registrar (Accounts)
N. Bhaskar Deputy Registrar (Health Unit, Legal Cell, Vigilance Matters, Nodal Officer for Public Grievances (PG), Director’s Office, Gender Grievances & Related Works)

Ramesh Kumar Thareja Consultant (Recruitment Cell) (On contract)
Alan V. Sinate Assistant Registrar (Store Purchase Section)
Mukesh Chand Assistant Registrar (IRD Accounts)
Raj Kumar Gupta Assistant Registrar (Accounts)
Deb Ranjan Mukherjee Assistant Registrar (Accounts)
Sanjay Pande Assistant Registrar (E-II, Training & Manpower)
Amitabh Mukherjee Assistant Registrar (Audit)
Suresh Kumar Gohar Assistant Registrar (Academics - UGS)
Anand Prakash Assistant Registrar (Student Affairs, Hindi Cell)
Rama Sharma (Ms.) Assistant Registrar (IRD)
Mukesh Khandelwal Institute Engineer (On deputation)
G.K. Taneja Executive Engineer
Anuj Gaur Executive Engineer
Ashok Kumar Executive Engineer
Rafat Jamal Assistant Executive Engineer
V.K. Bharaj Assistant Executive Engineer
Prem Kumar Singhat Assistant Executive Engineer
Brahm Prakash Assistant Executive Engineer
Raju Ram Parihar Assistant Executive Engineer (on lien)
Pradip Karamarkar Assistant Executive Engineer
Virbhan Singh Assistant Executive Engineer
Prem Singh Rawat Assistant Executive Engineer
Shiv Prakash Yadav Public Relations Officer
Bhupender Singh Principal Technical Officer
Uday Dadwal Technical Officer
Lily Khosa (Ms.) CMO (SAG), (Additional charge, Head, Hospital Services)
Renu Misurya (Ms.) CMO (SAG)
Ajay Kumar Jain CMO (SAG)
M.K. Sagar CMO (SAG)
Anila Khosla (Ms.) CMO (SAG)
P.K. Rajesh Sr. Medical Officer (Homeopathy)
Md. Ashafaque Hussain Sr. Medical Officer
Sayed Yasmeen Raunaq Sr. Medical Officer
L. Pangerlemba Sr. Medical Officer
Rajlaxmi Borah (Ms.) Medical Officer
Abhishek Gupta Medical Officer
Shalini Singh (Ms.) Medical Officer (Dental) (On contract)
Deepak Negi Sports Officer
Anishya Madan (Ms.) Industrial Liaison Officer
Shachi Mathur (Ms.) Student Counsellor
Aakriti Astha (Ms.) Student Counsellor (On contract) (Consolidated)
Kritika Doval (Ms.) Student Counsellor (On contract) (Consolidated)
Sandeep Sharma Security Officer, Incharge Transport Unit
INDIAN INSTITUTE OF TECHNOLOGY DELHI
THE HONOUR CODE

I .. Entry No. ...
do hereby undertake that as a student at IIT Delhi:

1. I will not give or receive aid in examinations; that I will not give or receive unpermitted aid in class work, in preparation of reports, or in any other work that is to be used by the instructor as the basis of grading; and

2. I will do my share and take an active part in seeing to it that others as well as myself uphold the spirit and letter of the Honour Code.

I realise that some examples of misconduct which are regarded as being in violation of the Honour Code include:

• Copying from another’s examination paper or allowing another to copy from one’s own paper;
• Unpermitted collaboration;
• Plagiarism;
• Revising and resubmitting a marked quiz or examination paper for re-grading without the instructor’s knowledge and consent;
• Giving or receiving unpermitted aid on take home examinations;
• Representing as one’s own work, the work of another, including information available on the internet;
• Giving or receiving aid on an academic assignment under circumstances in which a reasonable person should have known that such aid was not permitted; and
• Committing a cyber-offence, such as, breaking passwords and accounts, sharing passwords, electronic copying, planting viruses, etc.

I accept that any act of mine that can be considered to be an Honour Code violation will invite disciplinary action.

Date : Student’s Signature ..

Name ...

Entry No. ...
INDIAN INSTITUTE OF TECHNOLOGY DELHI

THE HONOUR CODE

I .., Entry No..
do hereby undertake that as a student at IIT Delhi:

1) I will not give or receive aid in examinations; that I will not give or receive unpermitted aid in class work, in preparation of reports, or in any other work that is to be used by the instructor as the basis of grading; and

2) I will do my share and take an active part in seeing to it that others as well as myself uphold the spirit and letter of the Honour Code.

☞ I realise that some examples of misconduct which are regarded as being in violation of the Honour Code include:

☞ Copying from another’s examination paper or allowing another to copy from one’s own paper;

☞ Unpermitted collaboration;

☞ Plagiarism;

☞ Revising and resubmitting a marked quiz or examination paper for re-grading without the instructor’s knowledge and consent;

☞ Giving or receiving unpermitted aid on take home examinations;

☞ Representing as one’s own work, the work of another, including information available on the internet;

☞ Giving or receiving aid on an academic assignment under circumstances in which a reasonable person should have known that such aid was not permitted; and

☞ Committing a cyber-offence, such as, breaking passwords and accounts, sharing passwords, electronic copying, planting viruses, etc.

I accept that any act of mine that can be considered to be an Honour Code violation will invite disciplinary action.

Date.. Student’s Signature.................................

Name..

Entry No..

INDIAN INSTITUTE OF TECHNOLOGY DELHI
Hauz Khas, New Delhi-110 016 (India)
www.iitd.ac.in