
Abstract 
 
Dementia, particularly Alzheimer’s Disease (AD), is a progressive neurological disorder with 
increasing global prevalence and no known cure. Early detection is crucial but remains 
challenging, as current diagnostic methods such as neuroimaging, cognitive assessments, and 
Cerebrospinal Fluid (CSF) analysis are often expensive, time-consuming, invasive, or 
impractical for routine clinical use. Diagnosis is further complicated by overlapping symptoms 
across dementia subtypes, frequently leading to misclassification. Importantly, neuropathological 
changes, such as tau tangles and amyloid plaques, begin in subcortical regions like the 
hippocampus nearly a decade before the onset of clinical symptoms. This early “clinically silent” 
stage underscores the urgent need for non-invasive, affordable, and portable tools that can 
enable routine brain health assessment and early-stage intervention. 
 
To address these challenges, the thesis work proposes a multi-faceted ElectroEncephalography 
(EEG)-based framework for early diagnosis, dementia subtype classification, disease severity 
estimation, and treatment response monitoring. The framework leverages both source-domain 
and sensor-domain EEG analysis during resting-state and Working Memory (WM) tasks to 
capture functional brain dynamics across cortical and subcortical regions. The feasibility of 
using moderate-density EEG systems (31-channel) in clinical practice is demonstrated with 
validation, confirming the reliable detection of memory-related hippocampus activity. Building on 
this, a subcortical image-based deep learning framework is developed to classify dementia 
subtypes and progression stages with high accuracy across varying EEG channel densities 
using a Conventional Convolutional Neural Network (CNN) and novel fusion strategies.  
 
For objective clinical interpretation, a threshold-based biomarker, the Dementia Severity Index 
(DSI), is introduced using interpretable EEG spectral information. A key strength of the 
framework lies in its threshold-based formulation, whereby specific feature ranges directly 
indicate the presence of dementia or its subtype, thus offering clinicians a straightforward 
diagnostic aid. DSI shows a strong correlation with cognitive assessments such as the 
Mini-Mental State Examination (MMSE), offering a scalable, quantitative alternative for 
evaluating cognitive decline. Furthermore, sensor-based computational markers are formulated 
to sensitively capture dementia-related signal disruptions. 
  
At the sensor-network level, Cross-Plot Transition Entropy (CPTE), a robust and noise-tolerant 
synchronization measure, is employed that demonstrates superior classification performance in 
both resting-state and WM tasks compared to existing network methods. In addition, the 
functional Excitation-to-Inhibition (fE/I) ratio is proposed to quantify temporal complexity 
differences across dementia stages. The results reveal characteristic disruptions in neural 
dynamics. The translational potential of the framework is further validated in a pilot intervention 
study. The EEG-derived fE/I biomarker captures treatment-related improvement through before 
and after intervention assessments conducted over a three-month course of Ayurvedic 
(Saraswata Ghrita) therapy. These findings establish EEG as a clinically viable, non-invasive, 



and sensitive modality for disease staging and for monitoring therapeutic efficacy across diverse 
medical contexts. 
 
In summary, the thesis establishes EEG source localization–based analysis as a clinically 
feasible framework for dementia diagnosis, staging, and therapy monitoring. By integrating 
source imaging, deep learning, graph networks, and interpretable biomarkers, the work 
demonstrates the potential of EEG to evolve into a reliable, scalable, and non-invasive tool for 
clinical dementia research and patient care. 
 
 


