Abstract

Dementia, particularly Alzheimer’s Disease (AD), is a progressive neurological disorder with
increasing global prevalence and no known cure. Early detection is crucial but remains
challenging, as current diagnostic methods such as neuroimaging, cognitive assessments, and
Cerebrospinal Fluid (CSF) analysis are often expensive, time-consuming, invasive, or
impractical for routine clinical use. Diagnosis is further complicated by overlapping symptoms
across dementia subtypes, frequently leading to misclassification. Importantly, neuropathological
changes, such as tau tangles and amyloid plaques, begin in subcortical regions like the
hippocampus nearly a decade before the onset of clinical symptoms. This early “clinically silent”
stage underscores the urgent need for non-invasive, affordable, and portable tools that can
enable routine brain health assessment and early-stage intervention.

To address these challenges, the thesis work proposes a multi-faceted ElectroEncephalography
(EEG)-based framework for early diagnosis, dementia subtype classification, disease severity
estimation, and treatment response monitoring. The framework leverages both source-domain
and sensor-domain EEG analysis during resting-state and Working Memory (WM) tasks to
capture functional brain dynamics across cortical and subcortical regions. The feasibility of
using moderate-density EEG systems (31-channel) in clinical practice is demonstrated with
validation, confirming the reliable detection of memory-related hippocampus activity. Building on
this, a subcortical image-based deep learning framework is developed to classify dementia
subtypes and progression stages with high accuracy across varying EEG channel densities
using a Conventional Convolutional Neural Network (CNN) and novel fusion strategies.

For objective clinical interpretation, a threshold-based biomarker, the Dementia Severity Index
(DSI), is introduced using interpretable EEG spectral information. A key strength of the
framework lies in its threshold-based formulation, whereby specific feature ranges directly
indicate the presence of dementia or its subtype, thus offering clinicians a straightforward
diagnostic aid. DSI shows a strong correlation with cognitive assessments such as the
Mini-Mental State Examination (MMSE), offering a scalable, quantitative alternative for
evaluating cognitive decline. Furthermore, sensor-based computational markers are formulated
to sensitively capture dementia-related signal disruptions.

At the sensor-network level, Cross-Plot Transition Entropy (CPTE), a robust and noise-tolerant
synchronization measure, is employed that demonstrates superior classification performance in
both resting-state and WM tasks compared to existing network methods. In addition, the
functional Excitation-to-Inhibition (fE/I) ratio is proposed to quantify temporal complexity
differences across dementia stages. The results reveal characteristic disruptions in neural
dynamics. The translational potential of the framework is further validated in a pilot intervention
study. The EEG-derived fE/I biomarker captures treatment-related improvement through before
and after intervention assessments conducted over a three-month course of Ayurvedic
(Saraswata Ghrita) therapy. These findings establish EEG as a clinically viable, non-invasive,



and sensitive modality for disease staging and for monitoring therapeutic efficacy across diverse
medical contexts.

In summary, the thesis establishes EEG source localization—based analysis as a clinically
feasible framework for dementia diagnosis, staging, and therapy monitoring. By integrating
source imaging, deep learning, graph networks, and interpretable biomarkers, the work
demonstrates the potential of EEG to evolve into a reliable, scalable, and non-invasive tool for
clinical dementia research and patient care.



