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The rise of deep neural networks has significantly advanced unsupervised generative107

modeling. Numerous Deep Generative Models (DGMs) have been proposed, including Vari-108

ational Autoencoders (VAE) [KW14], Generative Adversarial Networks (GAN) [GPAM+14],109

Wasserstein Autoencoders (WAE) [TBGS18], Adversarial Autoencoders (AAE) [MSJG16],110

Autoregressive Models [vdOKE+16, OKK16], Normalizing Flow-based Models [KD18], Energy-111

based Models [LCH+06, DM19], and Diffusion Models [HJA20]. These models may be cate-112

gorized along various dimensions, such as their architectural variations, presence or absence113

of explicit latent representation, training methodology and stability, density estimation capa-114

bility, and time taken for sampling. In this thesis, our focus is on Deep Latent Variable Gen-115

erative Models (DLVGMs), which refer to generative autoencoders (VAE, WAE, AAE) and116

GANs. This class of models uses low-dimensional latent representations of high-dimensional117

data, allowing learning informative low-dimensional representations for various downstream118

tasks (clustering, classification, and disentangling generative factors) while facilitating novel119

data generation. Interestingly, GANs are particularly notable for their high-quality gen-120

eration but suffer from unstable training, mode collapse, and hyperparameter sensitivity.121

In contrast, Autoencoders with regularized latent spaces (VAE, WAE, AAE) offer stable122

training, interpretable inference, and efficient sampling, though their generated images are123

visually less impressive than those from GANs. In this thesis, we intend to address some of124

the complementary strengths and limitations of these DLVGMs. The thesis is organized in125

several parts, as outlined below.126

In Part I (Prologue) of this thesis, we introduce various deep generative frameworks,127

define DLVGMs, highlight challenges (such as poor generation quality of RAEs, representa-128

tion learning issues, and the need for large-scale data) associated with DLVGMs, and review129

existing solutions.130

In Part II, ‘Optimizing the Latent Space of RAEs for Improved Generation,’ we diagnose131

the reasons behind the poor generation quality of generative AE frameworks by exploring132

two questions: 1. What is the ‘optimal’ latent dimension [MCJ+20], and 2. What is the133

’optimal’ latent prior [MASP21a] for a good generation? We hypothesize natural data134

generation as a two-step process involving a true low-dimensional latent space and a non-135

linear mapping to a high-dimensional data space. We show that under the assumption136
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of a Gaussian prior, the best generation quality is achieved when the dimensionality of137

the generative AE’s bottleneck layer matches the true latent dimensionality [MCJ+20]. In138

[MASP21a], we relax the Gaussian prior assumption to learn the prior flexibly, considering139

the true latent dimensionality.140

In Part III, ‘Optimizing the Latent Space of RAEs for Task-Specific Representation141

Learning,’ we focus on representation learning in an RAE framework. First, we study142

the impact of bias-variance trade-off due to fixed prior distribution versus learnable pri-143

ors on representation quality and demonstrate that learning the prior flexibly helps the144

model discover the actual data structure, improving clustering performance [MASP21b].145

While [MASP21b] uses uni-modal data, we address disentangled representation learning in146

a multi-modal setting in [MSSA23]. We decompose the joint latent space into continuous147

and discrete components, each with domain-specific and domain-invariant representations.148

We demonstrate the effectiveness of these disentangled joint representations in downstream149

tasks like classification and generation. In our subsequent work [MST+23], we combine the150

representation learning aspect with the generation ability of RAEs to develop a framework151

for class-imbalance mitigation to enhance discriminating performance. Precisely, we propose152

a minority oversampling method that is distance-metric-free and class-preserving by design.153

In Part IV, ‘Few-shot Generation Using DLVGMs,’ we address the issue that while154

DLVGMs offer a plethora of applications, they are data-hungry, limiting their applicability155

in real-world scenarios with data scarcity. Specifically, we develop techniques to trans-156

fer a source DLVGM built with large-scale data to a ‘close’ target domain with limited157

data. In [MTSA23], we perform few-shot ’generative domain adaptation’ via inference-time158

latent-code learning by prepending a latent adapter network. While [MTSA23] achieves159

high-quality generation, it requires considerable time to generate due to inference-time opti-160

mization. In [MTSA24], we address this by learning to sample the parameters of the latent161

adapter network using a hypernetwork.162

Finally, in Part V, we summarize our contributions and propose directions for future163

work based on the techniques and methods introduced in this thesis.164
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