Autonomous navigation using 3D LiDAR point clouds in complex real-world
environments remains a challenging task despite extensive research.
Uncertainty in environmental factors, such as the probabilistic motion of
dynamic objects, varying levels of occlusion, and rare scenes, adds to
the complexity. These challenges increase manifold in several adverse and
constrained real-life situations, including the absence of labeled
information, extreme sparsity, and susceptibility to adversarial attacks.
Many real-world navigation scenarios lack precise labeled information due
to numerous factors.

We observe that under such circumstances, standard solutions that assist
3D LiDAR navigation do not work. Segmentation, object detection, panoptic
segmentation, etc., are not possible with existing solutions. New
strategies need to be figured out to achieve these without labeled
information while also accounting for adverse constraints. Label-averse
settings limit the capacity of autonomous systems, making them
susceptible to adversaries and deteriorating navigation. The thesis
studies and addresses some of these challenges by proposing innovative
methods for 3D LiDAR-based navigation in these challenging and restricted
scenarios.

We develop a novel method to distinguish dynamic objects from static
environments without requiring labeled data, addressing the limitations
of existing segmentation-based approaches for accurate segmentation of
dynamic objects. Our solution extracts moving and movable objects from 3D
LiDAR point clouds without labels by inferring hidden scene parts
occluded by dynamic objects. This inferred static background, akin to a
static environment, enables object segmentation in dynamic scenes.

We also handle 3D LiDAR point cloud sparsity, where we propose a
technique to augment dynamic sparse LiDAR point clouds with missing
information, improving navigation accuracy in constrained environments.
Higher sparsity reduces point density on objects, but the overall
topology of a 3D LiDAR point cloud remains intact. We leverage tools from
Algebraic Topologyd€”particularly O-dimensional Persistent Homologya€”to
capture this global shape and guide point augmentation along existing
static structures. This property generates attention focused on the
global topology of a static 3D LiDAR point cloud while augmenting points
to a sparse LiDAR point cloud.

We investigate a new paradigm that uses differentiable SLAM in a self-
supervised setup to train deep learning models for 3D LiDAR-based
applications, enhancing their efficiency. Our proposed approach augments
standard navigation tasks with a self-supervised differentiable SLAM
framework. It enables end-to-end training of deep learning models with
SLAM error, which minimizes the discrepancy between model output and
ground truth via trajectory estimates. We demonstrate that our approach
outperforms existing methods and achieves improvements in navigation-
allied deep learning tasks.

We also explore the vulnerability of 3D LiDAR-based systems to
adversarial attacks. Unlike existing passive black-box attack systems, we
demonstrate a very simple white-box attack that directly affects the
acquired 3D LiDAR point cloud while maintaining the 3D LiDAR point cloud



quality to prevent detection. We minimally augment 3D LiDAR point clouds
with point injections to destabilize navigation while preserving data
integrity. This white-box attack uses adversarial LiDAR point clouds to
induce suboptimal trajectory estimates in SLAM, exploiting its reliance
on precise 3D LiDAR data.

Our research contributes to advancing the state-of-the-art in 3D LiDAR-
based autonomous navigation by addressing critical challenges in
restricted settings and providing practical solutions. The proposed
methods have the potential to enhance the safety, reliability, and
performance of autonomous systems operating in complex and dynamic
environments.



