
Autonomous navigation using 3D LiDAR point clouds in complex real-world 

environments remains a challenging task despite extensive research. 

Uncertainty in environmental factors, such as the probabilistic motion of 

dynamic objects, varying levels of occlusion, and rare scenes, adds to 

the complexity. These challenges increase manifold in several adverse and 

constrained real-life situations, including the absence of labeled 

information, extreme sparsity, and susceptibility to adversarial attacks. 

Many real-world navigation scenarios lack precise labeled information due 

to numerous factors. 

 

We observe that under such circumstances, standard solutions that assist 

3D LiDAR navigation do not work. Segmentation, object detection, panoptic 

segmentation, etc., are not possible with existing solutions. New 

strategies need to be figured out to achieve these without labeled 

information while also accounting for adverse constraints. Label-averse 

settings limit the capacity of autonomous systems, making them 

susceptible to adversaries and deteriorating navigation. The thesis 

studies and addresses some of these challenges by proposing innovative 

methods for 3D LiDAR-based navigation in these challenging and restricted 

scenarios. 

 

We develop a novel method to distinguish dynamic objects from static 

environments without requiring labeled data, addressing the limitations 

of existing segmentation-based approaches for accurate segmentation of 

dynamic objects. Our solution extracts moving and movable objects from 3D 

LiDAR point clouds without labels by inferring hidden scene parts 

occluded by dynamic objects. This inferred static background, akin to a 

static environment, enables object segmentation in dynamic scenes. 

 

We also handle 3D LiDAR point cloud sparsity, where we propose a 

technique to augment dynamic sparse LiDAR point clouds with missing 

information, improving navigation accuracy in constrained environments. 

Higher sparsity reduces point density on objects, but the overall 

topology of a 3D LiDAR point cloud remains intact. We leverage tools from 

Algebraic Topologyâ€”particularly 0-dimensional Persistent Homologyâ€”to 

capture this global shape and guide point augmentation along existing 

static structures. This property generates attention focused on the 

global topology of a static 3D LiDAR point cloud while augmenting points 

to a sparse LiDAR point cloud. 

 

We investigate a new paradigm that uses differentiable SLAM in a self-

supervised setup to train deep learning models for 3D LiDAR-based 

applications, enhancing their efficiency. Our proposed approach augments 

standard navigation tasks with a self-supervised differentiable SLAM 

framework. It enables end-to-end training of deep learning models with 

SLAM error, which minimizes the discrepancy between model output and 

ground truth via trajectory estimates. We demonstrate that our approach 

outperforms existing methods and achieves improvements in navigation-

allied deep learning tasks. 

 

We also explore the vulnerability of 3D LiDAR-based systems to 

adversarial attacks. Unlike existing passive black-box attack systems, we 

demonstrate a very simple white-box attack that directly affects the 

acquired 3D LiDAR point cloud while maintaining the 3D LiDAR point cloud 



quality to prevent detection. We minimally augment 3D LiDAR point clouds 

with point injections to destabilize navigation while preserving data 

integrity. This white-box attack uses adversarial LiDAR point clouds to 

induce suboptimal trajectory estimates in SLAM, exploiting its reliance 

on precise 3D LiDAR data. 

 

Our research contributes to advancing the state-of-the-art in 3D LiDAR-

based autonomous navigation by addressing critical challenges in 

restricted settings and providing practical solutions. The proposed 

methods have the potential to enhance the safety, reliability, and 

performance of autonomous systems operating in complex and dynamic 

environments. 

 


