
Abstract

End-to-End Translation Validation is the problem of verifying the executable code

generated by a compiler against the corresponding input source code for a single

compilation. This becomes particularly hard in the presence of dynamically-allocated

local memory where addresses of local memory may be observed by the program. In the

context of validating the translation of a C procedure to executable code, a validator

needs to tackle constant-length local arrays, address-taken local variables, address-taken

formal parameters, variable-length local arrays, procedure-call arguments (including

variadic arguments), and the alloca() operator.

We make the following contributions in our work:

1. A formalization of the execution semantics for an unoptimized intermediate repre-

sentation (IR) of a C program and its compiled 32-bit x86 assembly in the presence

of dynamically (de)allocated local memory. This includes modeling of the various

dynamic allocation constructs in C, such as address-taken local variables, constant-

and variable-length local arrays, address-taken formal parameters, procedure-call

arguments (including variadic arguments), and the GCC alloca() operator.

2. A notion of correct translation from the IR to the assembly through a refinement

definition. The definition incorporates the concept of undefined behavior (UB) within

the IR program, originally translated from C, where refinement is permitted to hold

v



trivially.

3. An algorithm that converts the correct translation check to first-order logic queries

over bitvectors, arrays, and uninterpreted functions that can be discharged using

off-the-shelf SMT solvers. The algorithm is capable of operating in both blackbox

and whitebox modes, with the blackbox mode enabling its usage with third-party

compilers that may not employ a specific allocation strategy, such as preallocation.

In particular, we are perhaps the first to enable support for dynamic stack allocation

strategy for procedure-call arguments used by almost all production compilers (e.g.,

GCC, Clang/LLVM).

4. A prototype implementation of the algorithm and its comprehensive evaluation on a

set of diverse benchmarks, including both micro-benchmarks and a real-world bzip2

program. Our prototype performs blackbox translation validation of C procedures

with up to 100+ SLOC against their corresponding assembly implementations with

up to 140+ instructions generated by an optimizing production compilers (such as

GCC, Clang/LLVM, ICC) with complex loop and vectorizing transformations.

vi


