
HARDWARE-ASSISTED SECURE EXECUTION ON REMOTE, UNTRUSTED SYSTEMS 
 
Securing code and data in a cloud computing environment is a quintessential problem. 
Cloud-based remote systems are untrusted, which is a challenge for applications 
dealing with sensitive data. A malicious adversary can aim to subvert the execution flow 
to obtain sensitive data. We show that traditional, license-based, encryption-based 
software-only solutions using a provable, strong, unbreakable cryptographic primitive 
are vulnerable to a malicious entity with admin-level privileges. A control flow bending, 
or CFB, attack does not interfere with the functioning of the defense mechanism but 
rather with its outcome, rendering the entire defense method ineffective. The industry 
has attempted to address this challenge using trusted execution environments (or TEEs), 
where the hardware ensures the code's confidentiality, integrity, and freshness. 
However, such solutions have faced resistance in adoption primarily due to two key 
limitations: one, high performance overheads, and second, limited or no accessibility to 
standard features due to the strict security requirements. 
  
In this thesis, we focus on alleviating both these limitations by enabling secure execution 
of applications in a TEE with minimal performance overheads, along with access to 
standard cloud features such as access to a secure file system, a mechanism to control 
the execution, and live migration. We use Intel Secure Guard eXtension, or Intel SGX, a 
TEE solution from Intel for our experiments. To solve the first key limitation, we propose 
a novel mechanism to prevent CFB attacks on applications by handicapping a binary by 
removing a small set of important functions. The binary can only execute when the 
execution is validated by a secure code inside SGX, either using a license file or a key. We 
propose novel methods to identify the “important” functions in the application and 
securely patch the handicapped binary. Subsequently, we extended the idea to enable a 
low-cost execution control mechanism in SGX, which provides a developer with 
complete execution control on remote machines. 
  
To solve the second key limitation, we first design a novel secure filesystem for SGX 
based on a thorough characterization of representative secure applications. The secure 
filesystem can be integrated with any SGX application without source code 
modifications. Finally, we combine all the previous contributions to enable the live 
migration of large SGX enclaves from one machine to another. Prior work in this space 
took several minutes to migrate a large SGX enclave from one machine to another; we 
reduced the total downtime to a few seconds. 
 


