
In recent years, Convolutional Neural Networks (CNNs) have gained immense 
popularity for their ability to deliver satisfactory accuracy in various machine 
learning and computer vision applications. The landscape is rich with a wide 
array of CNNs, each differing significantly in terms of execution time, energy 
consumption, and inference accuracy. To accelerate CNN execution, several 
hardware accelerators have been introduced, with Xilinx's Deep Learning 
Processor Unit (DPU) being a notable example. The DPU offers a multitude of 
configuration options and is capable of executing a diverse range of CNNs. 
However, the choice of CNNs and the configuration options in these accelerators 
create a vast design space, necessitating detailed trade-off analysis to design 
efficient systems. To support such analysis, this thesis introduces several 
variations to a framework for estimating the execution time and energy 
consumption of CNNs when executed on DPU-based systems. This framework 
offers invaluable assistance to system designers in selecting accelerator and 
CNN configuration parameters based on specific application requirements, 
ultimately leading to optimized performance.

Moreover, the methodologies proposed in this thesis are generic and can be 
applied to a wide range of CNN accelerators. The thesis begins with the 
introduction of INFER, a methodology designed to estimate the execution time of
any CNN on a given DPU size without the need for actual implementation. INFER 
operates within restricted DPU configurations, allowing up to only three DPUs 
active concurrently and employing the default bus interconnections provided by 
the Xilinx tool to the external memory. Additionally, it can estimate the 
additional time required due to memory interference resulting from the 
concurrent use of multiple DPUs. Energy estimation for CNNs running on a DPU is
another focus of this thesis. An energy estimation technique named EnergyNN, is
developed by leveraging the characteristics of CNNs and DPUs. This technique 
can be applied to predict the energy consumption of even newer CNNs not used 
in the model development. Extensive evaluation demonstrates the effectiveness 
of these approaches, with average prediction errors of 6.6% for execution time 
and 8.8% for energy estimation. The utility of these predictions is further 
illustrated through real-world applications in traffic monitoring and drone 
systems.

The thesis also expands its scope to explore the design space consisting of a 
larger number of DPUs, thus effectively increasing the concurrency. However, 
this expansion introduces complexities related to bus connections and CPU core 
limitations. To address these challenges, the thesis introduces an execution time
predictor designed to optimize DPU configurations to meet the performance 
demands of diverse tasks. Various methods are employed to isolate concurrent 
CNNs from each other and the operating system. A machine learning-based 
prediction approach named EXPRESS, is then introduced to predict the execution
time of a given CNN on a DPU configuration, considering the characteristics of 
the CNN, DPU, and bus. EXPRESS provides predictions for both CPU and DPU 
processing times, resulting in the estimation of end-to-end processing times. To 
further enhance this approach, EXPRESS-2.0 is introduced, offering support for 
heterogeneous CNNs. To avoid having different number of features for different 
count of DPUs/CNNs, EXPRESS-2.0 consolidates the features of Co-runners (CNNs
which run concurrently with the CNN for which we predict the execution time) 
together.



A controller has been developed to isolate CPU cores responsible for executing 
the operating system and the actual CNNs. This isolation reduces the variation in
execution time measurements and enhances prediction accuracy. Across all 
these methodologies, machine learning based regression techniques are 
employed for prediction. All experiments are conducted on a real FPGA board, 
and the evaluation, featuring 16 standard CNNs, reveals very low prediction 
errors. EXPRESS and EXPRESS-2.0 achieve an average prediction error of 2.2% 
and 0.7%, respectively. The low prediction error of the framework make it highly 
effective for design space exploration, offering significant benefits to embedded 
system application developers.


