PH.D. VIVA-VOCE

Name of the Candidate: Suraj Kumar

Entry No.: 2020MAZ8752

Department: Department of Mathematics

Title of the Thesis: Defining equation of the Rees algebra of ideals

Supervisor: Prof. Vivek Mukundan

Abstract: We investigate the structure of the Rees algebra $\mathcal{R}(I)$ of height two perfect ideals I in a polynomial ring $R = \mathbb{k}[x_1, \dots, x_d]$ over an algebraically closed field \mathbb{k} . While defining equations of $\mathcal{R}(I)$ are well understood when I satisfies the condition (G_d) , the cases (G_{d-1}) and (G_{d-2}) have remained largely open. The present work fills the gap by providing explicit and computable descriptions of the defining ideal of $\mathcal{R}(I)$ in these weaker settings, and shows that $\mathcal{R}(I)$ is not necessarily Cohen-Macaulay only under stronger conditions.

The study is divided into two main cases. First, we consider almost linearly presented ideals $I = (f_0, \ldots, f_d)$, that is, ideals whose syzygy matrix has linear entries except possibly in the last column, which consists of homogeneous quadratics. Assuming I satisfies (G_{d-1}) bu not (G_d) , we derive explicit generators for the defining ideal of $\mathcal{R}(I)$.

In the second case, we treat linearly presented ideals $I = (f_0, \ldots, f_d)$ that satisfy (G_{d-2}) but fail both (G_d) and (G_{d-1}) . Again, explicit equations for $\mathcal{R}(I)$ are obtained, accompanied by counterexamples showing that Cohen-Macaulayness need not hold.

These results yield new insight into the arithmetic and geometric properties of the Rees algebra associated with height two perfect ideals beyond the classical (G_d) setting, and provide concrete tools for their computation.