
CONVERGENCE ANALYSIS OF REGULARIZED LEARNING

ALGORITHMS FOR FUNCTIONAL DATA

This thesis studies the convergence analysis of estimators in the Functional Linear Re-
gression (FLR) and polynomial regression models, conducting a comprehensive examina-
tion of regularized learning algorithms within the framework of Functional Data Analysis
(FDA). The study is motivated by the growing availability and importance of functional
data in many scientific and applied fields, such as engineering, medicine, environmental
studies, and finance, where observations are inherently represented as curves or functions
across an arc. As the use of these data types increases, there is a growing need for learning
algorithms that not only scale efficiently to high-dimensional functional inputs but also
come with rigorous theoretical guarantees to ensure their reliability. The main contribu-
tions of the thesis are presented as following:

We generalize classical regularization techniques—such as Tikhonov regularization—by
utilizing a general spectral regularization method in the framework of reproducing kernel
Hilbert spaces. We derive minimax optimal convergence rates for both estimation and
prediction errors under commutative and non-commutative settings, significantly extend-
ing prior results by considering wider range of Hölder type smoothness conditions on the
unknown slope function. As kernel methods are burdened with hight computational cost,
we address this issue by exploring two computationally efficient algorithms in the repro-
ducing kernel Hilbert space framework: the kernel Conjugate Gradient (CG) method and
the Nyström subsampling method. The kernel CG method utilizes iterative optimization
with early stopping rules to mitigate overfitting and reduce computational costs while
maintaining optimal convergence rates. The Nyström method, on the other hand, ap-
plies low-rank kernel matrix approximations to significantly lower memory and runtime
demands. We establish the optimal convergence rates for each algorithm, demonstrating
their statistical efficiency alongside their computational benefits.

Further, we extends the analysis of regularized learning algorithms to settings governed
by general source conditions, moving beyond conventional assumptions such as operator
monotonicity or Lipschitz continuity of the index functions. Moreover, the analysis is
carried out in a general framework aimed at learning a vector in general separable Hilbert
space.

Finally, we shift our focus on function-on-function polynomial regression models, which
generalize the classical FLR framework by incorporating nonlinear interactions between
functional predictors and responses. This extension enables the handling of more complex
relationships that cannot be captured by linear models alone. In contrast to the kernel-
based methods employed in earlier chapters, this chapter adopts a different framework by
working directly in the L2 space. Theoretical analysis establishes convergence rates under
general smoothness conditions. In addition, minimax lower bounds are derived, confirming
the optimality of the proposed rates.

The contributions of this thesis collectively establish a thorough foundation for regu-
larized functional regression. By addressing both statistical optimality and algorithmic
efficiency, the work enhances the practical viability of functional learning methods while
deepening their theoretical understanding.
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