
Abstract

For q, a prime power, \mathbb{F}_{q} denotes the field of order q. Then, the group $\mathbb{F}_{q}^{\times}:=\mathbb{F}_{q} \backslash\{0\}$ of units of \mathbb{F}_{q} is cyclic and a generator of this group is referred to as a primitive element of the field. In fact, \mathbb{F}_{q} has exactly $\varphi(q-1)$ primitive elements, φ being Euler's totient function. Let r be a divisor of $(q-1)$. An r-primitive element in \mathbb{F}_{q} is an element of \mathbb{F}_{q}^{\times}of order $(q-1) / r$. Evidently, if α is a primitive element, then for every divisor r of $(q-1), \alpha^{r}$ is an r-primitive element so that primitive elements are 1-primitive elements. An element α belonging to the degree n extension $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} is referred to as normal over \mathbb{F}_{q} if $B_{\alpha}=\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ spans $\mathbb{F}_{q^{n}}$ as an $\mathbb{F}_{q^{-}}$-vector space. It is necessary and sufficient for $\alpha \in \mathbb{F}_{q^{n}}$ to be normal over \mathbb{F}_{q} that the polynomials $g_{\alpha}(x)=$ $\alpha x^{n-1}+\alpha^{q} x^{n-2}+\cdots+\alpha^{q^{n-1}} x+\alpha^{q^{n-1}}$ and $x^{n}-1$ are relatively prime over $\mathbb{F}_{q^{n}}$. Using this equivalence, the notion of k-normal elements was introduced by Huczynska et. al. in 2003; an element $\alpha \in \mathbb{F}_{q^{n}}$ is k-normal over \mathbb{F}_{q} if the gcd of the polynomials $g_{\alpha}(x)$ and $x^{n}-1$ in $\mathbb{F}_{q^{n}}[x]$ has degree k. Equivalently, an element α beloning to $\mathbb{F}_{q^{n}}$ is k-normal over \mathbb{F}_{q} if and only if the span of $\left\{\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}\right\}$ over \mathbb{F}_{q} is $(n-k)$-dimensional. Observe that 0 -normal elements are normal elements. In the recent time, quite a few people worked on elements that are k-normal or r-primitive or both. It is worth mentioning that, primitive elements have wide applications in coding theory and cryptography. If r is small, an r-primitive element may be used as a replacement of a primitive element in many applications. If for a rational function $f(x)$, both α and $f(\alpha)$ are primitive elements in \mathbb{F}_{q}, the pair $(\alpha, f(\alpha))$, is referred to as a primitive pair; in the past, people studied the existence of such pairs.

In this thesis, we deal with the question of the existence of primitive pair; in fact, we improve the known bounds for even or odd rational functions for $q \equiv 3(\bmod 4)$. Further, for $r_{1}, r_{2}>0$ both dividing $\left(q^{n}-1\right), k_{1}, k_{2} \geqslant 0$ such that there are polynomials dividing $\left(x^{n}-1\right)$ with degrees k_{1} and $k_{2}, a, b \in \mathbb{F}_{q}$ with $a \neq 0$, we study for a rational function $f(x) \in \mathbb{F}_{q^{n}}(x)$ the existence of an element in $\mathbb{F}_{q^{n}}$ which is both k_{1}-normal and r_{1}-primitive with its norm equal to a and its trace equal to b such that its image under f is both k_{2}-normal and r_{2}-primitive in $\mathbb{F}_{q^{n}}$. We obtain an implicit condition on q and n for the existence of such a pair. We discuss a few numerical examples. Moreover, if we impose an additional condition on k_{1}, k_{2}, namely, $n \geqslant 2\left(k_{1}+k_{2}\right)+5$, then for every n such that $x^{n}-1$ has divisors of degree k_{1} and k_{2} and for all but finitely many prime powers q such that $r_{1}, r_{2} \mid q^{n}-1$, there exists $\alpha \in \mathbb{F}_{q^{n}}$ with the desired property. Also, in this thesis, we deal with the existence of r-primitive elements in arithmetic progression by using a new formulation of the characteristic function for r-primitive elements belonging to \mathbb{F}_{q}. In fact, we find a condition on q for the existence of $\alpha \in \mathbb{F}_{q}^{\times}$for a given $n \geqslant 2$ and $\beta \in \mathbb{F}_{q}^{\times}$such that each of $\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+(n-1) \beta \in \mathbb{F}_{q}^{\times}$is r-primitive in \mathbb{F}_{q}^{\times}. Furthermore, as a consequence, the number of arithmetic progressions in \mathbb{F}_{q} consisting of r-primitive elements of length n, is asymptotic to $\frac{q}{(q-1)^{n}} \varphi\left(\frac{q-1}{r}\right)^{n}$. Besides, using a traditional method, we improved the existence criterion for such arithmetic progressions in \mathbb{F}_{q} when $q \equiv 3(\bmod 4)$.

