Abstract

For q, a prime power, \mathbb{F}_q denotes the field of order q. Then, the group $\mathbb{F}_q^{\times} := \mathbb{F}_q \setminus \{0\}$ of units of \mathbb{F}_q is cyclic and a generator of this group is referred to as a primitive element of the field. In fact, \mathbb{F}_q has exactly $\varphi(q-1)$ primitive elements, φ being Euler's totient function. Let r be a divisor of (q-1). An r-primitive element in \mathbb{F}_q is an element of \mathbb{F}_q^{\times} of order (q-1)/r. Evidently, if α is a primitive element, then for every divisor r of (q-1), α^r is an r-primitive element so that primitive elements are 1-primitive elements. An element α belonging to the degree n extension \mathbb{F}_{q^n} over \mathbb{F}_q is referred to as normal over \mathbb{F}_q if $B_{\alpha} = \{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ spans \mathbb{F}_{q^n} as an \mathbb{F}_q -vector space. It is necessary and sufficient for $\alpha \in \mathbb{F}_{q^n}$ to be normal over \mathbb{F}_q that the polynomials $g_{\alpha}(x) = \prod_{q=1}^{n-1} \prod_{$ $\alpha x^{n-1} + \alpha^q x^{n-2} + \dots + \alpha^{q^{n-1}} x + \alpha^{q^{n-1}}$ and $x^n - 1$ are relatively prime over \mathbb{F}_{q^n} . Using this equivalence, the notion of k-normal elements was introduced by Huczynska et. al. in 2003; an element $\alpha \in \mathbb{F}_{q^n}$ is k-normal over \mathbb{F}_q if the gcd of the polynomials $g_{\alpha}(x)$ and $x^n - 1$ in $\mathbb{F}_{q^n}[x]$ has degree k. Equivalently, an element α beloning to \mathbb{F}_{q^n} is k-normal over \mathbb{F}_q if and only if the span of $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ over \mathbb{F}_q is (n-k)-dimensional. Observe that 0-normal elements are normal elements. In the recent time, quite a few people worked on elements that are k-normal or r-primitive or both. It is worth mentioning that, primitive elements have wide applications in coding theory and cryptography. If r is small, an r-primitive element may be used as a replacement of a primitive element in many applications. If for a rational function f(x), both α and $f(\alpha)$ are primitive elements in \mathbb{F}_{q} , the pair $(\alpha, f(\alpha))$, is referred to as a primitive pair; in the past, people studied the existence of such pairs.

In this thesis, we deal with the question of the existence of primitive pair; in fact, we improve the known bounds for even or odd rational functions for $q \equiv 3 \pmod{4}$. Further, for $r_1, r_2 > 0$ both dividing $(q^n - 1), k_1, k_2 \ge 0$ such that there are polynomials dividing $(x^n - 1)$ with degrees k_1 and $k_2, a, b \in \mathbb{F}_q$ with $a \ne 0$, we study for a rational function $f(x) \in \mathbb{F}_{q^n}(x)$ the existence of an element in \mathbb{F}_{q^n} which is both k_1 -normal and r_1 -primitive with its norm equal to a and its trace equal to b such that its image under f is both k_2 -normal and r_2 -primitive in \mathbb{F}_{q^n} . We obtain an implicit condition on q and n for the existence of such a pair. We discuss a few numerical examples. Moreover, if we impose an additional condition on k_1, k_2 , namely, $n \ge 2(k_1 + k_2) + 5$, then for every n such that $x^n - 1$ has divisors of degree k_1 and k_2 and for all but finitely many prime powers q such that $r_1, r_2 \mid q^n - 1$, there exists $\alpha \in \mathbb{F}_{q^n}$ with the desired property. Also, in this thesis, we deal with the existence of r-primitive elements in arithmetic progression by using a new formulation of the characteristic function for r-primitive elements belonging to \mathbb{F}_q . In fact, we find a condition on q for the existence of $\alpha \in \mathbb{F}_q^{\times}$ for a given $n \ge 2$ and $\beta \in \mathbb{F}_q^{\times}$ such that each of $\alpha, \alpha + \beta, \alpha + 2\beta, \ldots, \alpha + (n-1)\beta \in \mathbb{F}_q^{\times}$ is r-primitive in \mathbb{F}_q^{\times} . Furthermore, as a consequence, the number of arithmetic progressions in \mathbb{F}_q consisting of r-primitive elements of length n, is asymptotic to $\frac{q}{(q-1)^n} \varphi(\frac{q-1}{r})^n$. Besides, using a traditional method, we improved the existence criterion for such arithmetic progressions in \mathbb{F}_q when $q \equiv 3 \pmod{4}$.