Abstract:

Sleep disorders, particularly obstructive sleep apnea (OSA), pose significant health risks,
affecting cardiovascular, neurological, and cognitive functions. OSA is characterized by
recurrent episodes of airway obstruction during sleep, leading to intermittent hypoxia, sleep
fragmentation, and excessive daytime sleepiness. Left untreated, it increases the risk of
hypertension, stroke, heart failure, metabolic disorders, and cognitive decline. Traditional
diagnostic methods, such as polysomnography (PSG), are resource-intensive, intrusive, and
impractical for large-scale or home-based monitoring. This thesis addresses these limitations by
developing wearable sensor-based systems and leveraging machine and deep learning models to
facilitate early, non-invasive detection of sleep disorders using physiological signals.

A major contribution of this work is a wearable respiration monitoring system integrating the
Inertial Measurement Unit (IMU), Electrocardiogram (ECG), and Photoplethysmogram (PPG)
sensors to capture signals indicative of respiratory irregularities linked to OSA. The system was
evaluated through extensive trials, demonstrating its effectiveness in detecting subtle respiratory
variations. Derived temporal parameters were benchmarked against PSG data, and advanced
signal processing was employed to reduce noise. Comparative analyses using statistical, machine
learning, and deep learning methods revealed that multimodal signal integration improves
accuracy and reliability in respiration estimation.

Furthermore, this thesis proposes a novel feature-engineering framework for sleep apnea
detection using single-lead ECG signals, aimed at enabling efficient and non-invasive diagnosis.
The framework extracts key cardiac features such as heart rate variability (HRV) and R-R
intervals, along with underutilized metrics from the time, time-frequency, and nonlinear
domains—including entropy-based features—to better capture the physiological disruptions
caused by apneic events. Evaluated across multiple independent datasets and a range of machine
learning classifiers, the model demonstrated strong classification performance, robustness, and
computational efficiency. Its lightweight nature supports real-time processing, making it highly
suitable for wearable and home-based diagnostic systems.

Building upon this, the research investigates deep learning methods to automate sleep apnea
detection using raw physiological signals. Architectures such as supervised, self-supervised, and
Transformer-based models were developed and assessed for their ability to learn complex
temporal and nonlinear patterns without manual feature extraction. These models showed high
sensitivity and generalizability and were optimized for real-time deployment through architecture
simplification and parameter tuning, making them feasible for integration into wearable
platforms.

The thesis further explores sleepwalking detection, focusing on an IMU-based gait analysis
system, and investigates potential links between sleepwalking and the severity of apnea. A single
IMU sensor placed on the shank captured gait events, and machine learning classifiers—SVM,
KNN, and LDA—were used to identify movement patterns relevant to sleepwalking. The system



showed consistent performance across individuals and sensor placements. However, the study
was limited to healthy participants, and further validation is needed in clinical populations to
confirm its diagnostic value. Despite this, the study provides a foundational step toward non-
invasive, wearable-based monitoring of parasomnia behaviors.

Limitations:

Despite promising results, this research has several limitations. First, the wearable systems and
models were validated primarily on small-scale or publicly available datasets, which may not
fully represent the diversity of real-world conditions. Second, the models’ performance on
clinical-grade, heterogeneous data—particularly from individuals with coexisting disorders—
remains to be rigorously evaluated. Third, while deep learning models offer superior
performance, they require substantial computational resources during training, which may limit
scalability in some low-power wearable platforms. Additionally, the sleepwalking study was
conducted only on healthy participants, and further clinical validation is essential before drawing
conclusive insights for diagnostic applications. Lastly, the wearable prototypes developed in this
study are yet to undergo long-term usability, durability, and compliance testing in real-world
home settings.

This thesis advances the integration of wearable sensing with Al-driven analysis to develop
accessible, scalable, and cost-effective solutions for sleep disorder diagnostics. By leveraging
multimodal physiological signals and both machine learning and deep learning techniques, it
presents practical alternatives to complex, clinic-based assessments such as polysomnography.
The proposed systems are optimized for real-time, non-invasive, and home-based monitoring.
This work lays the foundation for future research in clinical validation, large-scale deployment,
and integration into digital health ecosystems for continuous and personalized sleep health
management.



