SYNTHESIS, CHARACTERIZATION, AND PROTON CONDUCTION BEHAVIOUR OF COORDINATION POLYMERS DERIVED FROM OXY PHOSPHORUS LIGANDS

Ekta Jakhar

2016CYZ8242

ABSTRACT

The work presented in this thesis is a systematic study to develop a rational synthesis of organo-amine mediated zinc phosphite/phosphonate-based coordination assemblies. The use of phosphite/ phosphonate diesters instead of conventional oxy-phosphorus acids in hydro/solvothermal reactions provides an insight into the genesis of higher dimensional structural motifs via the isolation of intermediate phases. Several new organic-inorganic hybrids have been isolated and further, their proton conduction behaviour has been studied. The inclusion of imidazole/imidazolium cations in the structural frameworks, such as \([\text{H}_2\text{Im}][\text{Zn}_3(\text{HPO}_3)_4]\) and \([\text{Zn}(\text{HPO}_3)(\text{HIm})]\) offers an intrinsic proton source to enable high proton conductivity on the order of \(10^{-3}-10^{-4}\) S cm\(^{-1}\) at 35 and 77% RH in the temperature range of 25-100 °C. The synthetic approach has been extended to the zinc phosphonate family. The results are described in chapter III. In chapter IV, new cadmium phosphites, \([\text{Cd}\{\text{O}P(\text{O})(\text{OMe})_2\}(4,4´-\text{bipy})]\), \([\text{H}_2\text{pip}][\text{Cd}(\text{O}_2\text{PH})_2(\text{H}_2\text{O})]-\text{H}_2\text{O}\) and a mixed ligand coordination polymer, \([\text{Cd}(\text{OAc})(\text{ox})_{0.5}\text{(bix)}]\) formed by \textit{in situ} formation of oxalate (ox) ligand are reported. Impedance measurement studies between 25-75 °C under 77 % RH reveal ultrahigh proton conductivity on the order of \(10^{-1}-10^{-2}\) S cm\(^{-1}\). These can be regarded as important additions to the known family of high proton conducting materials. The synthesis and structural aspects of related cadmium phosphate esters, \([\text{Cd}\{\text{O}P(\text{O})(\text{OMe})_2\}_{2}(4,4´-\text{bipy})]\) and \([\text{Cd}\{\text{O}P(\text{O})(\text{OMe})_2\}_{2}(\text{C}_6\text{H}_{10}\text{O}_2\text{N}_2)]\) are summarized in chapter V; the latter being formed by \textit{in situ} N-formylation of piperazine under solvothermal conditions in presence of DMF as solvent. The study has been extended to explore the reaction of phosphate triesters with elemental tin
at elevated temperatures (180 °C). The method offers a viable route to $\text{Me}_2\text{Sn}\{\text{OP(O)(OR)}_2\}_2$, (R = Me, Et). The reaction invariably proceed via the concomitant formation of Sn-C and Sn-O-P bonds. A facile metal ion metathesis is observed upon the reaction of $\text{Me}_2\text{Sn}\{\text{OP(O)(OMe)}_2\}_2$ with Zn(OAc)_2 under ambient conditions and resulted in the isolation of $\text{Zn}\{\text{OP(O)(OMe)}_2\}_2$ as a crystalline solid.