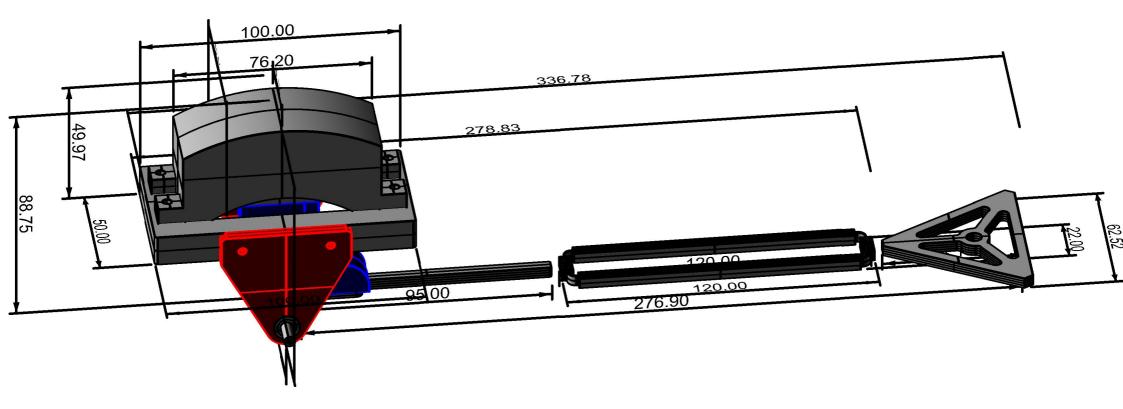
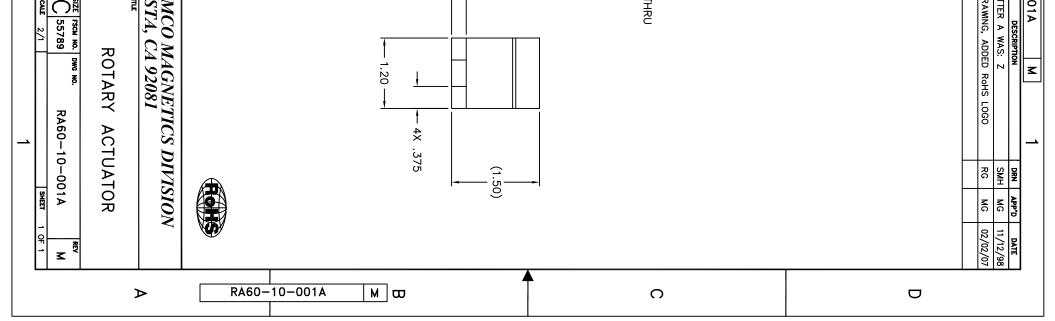

Department of Mechanical Engineering IIT Delhi

Quotations are invited for <u>Realisation of a fine manipulation system</u> for precision grasping as per the drawing below.



The mechanism is actuated by three RA60-10-0001A sector motors by BEI Kimco, the dimensioned drawing of which is appended. The mechanism is to be assembled in the IIT with these motors which will be provided by the IIT on completion of the fabrication.


Payment term will be 100% against delivery. Quotations for fabricating the same are requested at the office of the undersigned, at Rm 426 Block II, IIT by the 30th of September, 2012.

Sudipto Mukherjee (PI RP02351)

Attachments: RA60-10-0001A.pdf and OneArm.pdf

	⊳	ω	C C	D
+	VOLTAGE APP QUE ON THE OM THE TERN	2x 4-40 UNC-2B THREADED INSERT ▼.31 MAX ALLOWABLE SCREW PENETRATION ▼.15 FREE THREAD DEPTH	COIL ASSEMBLY INERTIA OZ-IN- STROKE (ANGULAR) ± DEGR COIL CLEARANCE IN THERMAL RESISTANCE OF COIL °C/WATI MAX. ALLOWABLE WINDING TEMP. °C WEIGHT OF COIL ASSEMBLY OZ TOTAL WEIGHT OZ * AT MID-STROKE & 25° AMBIENT TEMPERATURE *** 10 SECONDS AT 25°C AMBIENT & 155°C COIL T **** 25°C AMBIENT & 155°C WINDING TEMPERATURE **** MEASURED AT 1000 Hz.	4 WINDING CONSTANTS * DC RESISTANCE VOLTAGE @ TP CURRENT @ TP TORQUE SENSITIVITY BACK EMF CONSTANT INDUCTANCE **** ACTUATOR PARAMETERS * PEAK TORQUE ** CONTINUOUS STALL TORQUE *** ACTUATOR CONSTANT ELECTRICAL TIME CONSTANT POWER I ² R @ TP
	LIED TO THE (+) COIL ASSEMBLY IN INAL SIDE. SPECIFIED		OZ-IN-SEC ± DEGREE IN "C/WATT "C/WATT OZ OZ OZ OZ PERATURE PERATURE PERATURE	UNITS OHMS VOLTS AMPERES OZ-IN/AMP V/(RAD/SEC) MICRO-HENRY OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN OZ-IN
	TERMINAL WILL			$T = \frac{112.5\%}{V}$ $T = \frac{112.5\%}{V}$ $T = \frac{110\%}{V}$ T_{CS} T_{E}
L	WILL DIRECTION	1.625	0.008 15 0.015 5.2 155 0.75 14.7	З В В В В В В В В
	Proprietary rights of BEI Kimo or involved in the subject matter of this material and al manufacturing, reproduction, use, and sales pertaining to such subject matter are expressly proprietary document is subject matter are expressly excepting this material agrees that this material will not be used, copied or reproduced in agreeded in any manner or to any person except to meet the purpose for which it was agreed in agrees to the the this material will not be used, copied or reproduced in any person except to meet the purpose for which it was INIRD ANGLE PROJECTION UNLESS ONERWISE SECIFIC: -I.L. DIMENSIONS ARE IN INOUES DIMENSIONS ARE IN INOUES -MAX FILLET R .010 DIMENSIONS APPLY AFTER FINISH -DIMENSIONS APPLY AFTER F	5 ± .010 COLL ASSEMBLY 2X SOLDER TERMINAL A A A R3.12±0.03 A X .25 A X .25	CCW - IS' - IS' - VECTOR CCW - CW (STROKE) (STROKE) (STROKE)	WDG A 2 RA60-10-001A 1.9 1.9 1 19 0.134 1.38

