
1

INDIAN INSTITUTE OF TECHNOLOGY DELHI HAUZ KHAS, NEW

DELHI-110016

Dated: 03/10/2024

Open Tender Notice No.IITD/BCSE (SP-4764)/2024

Expression of Interest

Transfer of Technology from Prof. Smruti Ranjan Sarangi’s research group (IIT Delhi)

1. Introduction: Over the last several years Prof. Smruti R. Sarangi’s group in the

Computer Science and Engineering Department (https://srsarangi.github.io/) at IIT

Delhi has developed several technologies that are ready to be commercialized.

This EoI (Expression of Interest) is to solicit interests from potential buyers.

Specifically, the aim is to solicit requests from interested parties and then have an

open discussion with them to decide the roadmap for commercialization. There are

many strategies possible. Some technologies can be auctioned to the highest

bidder with an upfront payment. Some technologies that are not very mature can

go for joint development with a non-exclusive tech. transfer agreements. In such

cases, royalty sharing in the future can be looked at without upfront payments.

Given the complex nature of such an endeavour, for every technology, it is

necessary to create a bespoke mechanism for commercialization. Note that this is

not a tender nor a formal request for bids.

Interested buyers/bidders can simply respond to the EoI on CPP eProcurement portal or

simply send an e-mail to srsarangi@cse.iitd.ac.in

A brief description of the technologies are as follows.

Brief list:

1. An efficient stereo-vision system for mobile robots and drones [link]

2. Carla-based self-driving car simulator [link]

3. Drone-Swarming Simulator [link]

4. Topological Placement Tool [link]

5. Car-Data Logger [link]

6. Secure Compression + Encryption Accelerator [link]

https://srsarangi.github.io/
mailto:srsarangi@cse.iitd.ac.in

2

SCHEDULE

Name of Organization Indian Institute of Technology Delhi

Tender Type (Open/Limited/EOI/Auction/Single) EOI

Tender Category (Services/Goods/works) Service

Type/Form of Contract (Work/Supply/

Auction/Service/Buy/Empanelment/ Sell)

EOI

Date of Issue/Publishing 03/10/2024 (15:00 Hrs)

Document Download Start Date and Time 03/10/2024 (15:00 Hrs)

Online Pre Bid Meeting ---

Last Date and Time for Uploading of Bids 24/10/2024 (15:00 Hrs)

Date and Time of Opening of Technical Bids 25/10/2024 (15:00 Hrs)

EMD NIL. However, bidders are required to

submit ‘Bid Security Undertaking’

(Annexure-I)

Bid Validity days (180/120/90/60/30)
90 days from the date of opening

of Technical bids

Address for Communication Prof. Smruti R. Sarangi,
Computer Science and Engineering, IIT
Delhi Hauz Khas-110016

Contact No. 011-2659 7065

Email Address srsarangi@cse.iitd.ac.in

2. Technologies

1. An efficient stereo-vision system for mobile robots and drones:

A stereo-camera comprises a pair of two cameras that are used to estimate the depth

of objects in the scene. They are extensively used by drones and mobile robots to

understand their environment. The challenge is to accurately estimate the depths of

different objects in the scene. There is a need to apply different algorithms to “fix” the

depth image. The current state-of-the-art systems have the following shortcomings:

i. ML-based algorithms are very slow (less than 2 frames per second).

ii. Non-ML algorithms are faster (17 frames per second), but their quality is very

poor. Even the default package that comes along with the Intel RealSense

D400 camera finds it very hard to fix all the holes in the depth image.

Our novel approach (link to preprint) is based on sophisticated techniques based on point-

cloud fusion and template matching.

mailto:srsarangi@cse.iitd.ac.in
https://arxiv.org/abs/2407.15067

3

We achieve the following:

i. A consistent 27 FPS throughput on NVIDIA Jetson Nano (using Intel

RealSense D400).

ii. 31% better quality (PSNR/SSIM) than the state-of-the-art.

iii. Even as compared to the best non-ML solution (17 FPS), our system is much

faster (at 27 FPS).

We will transfer the C++ and CUDA code to an interested party.

3. Carla-based self-driving car simulator

We have created a simulator for self-driving cars based on the open-source Carla

simulator. Our simulator was initially used for research in several self-driving technologies.

Now, the code is reasonably mature and can be transferred to third parties.

We have implemented the following in our simulator:

1. The Perception Stack

a. Lane detection

b. Object detection and tracking

c. Traffic light detection

d. Localization (SLAM)

2. Motion planning and control

a. Global planning

b. Local planning

c. PID controller for motion control

3. Agents

a. Manual (possible to drive) using the keyboard or an attached steering

device

b. Carla (default)

c. Our autonomous driving agent

4

Figure 1: Obstacle detection (dynamic)

Figure 2: ORB-SLAM result

5

Figure 3: Object tracking and motion planning

4. Drone-Swarming Simulator

Drone swarming is expected to be a major driver of innovation in the space of drones and

mobile robots. Often it is not possible for a swarm of drones to fly with continuous GPS

guidance. GPS signals provide an approximate location reference and there are a lot of

GPS-denied environments as well. Furthermore, there could be obstacles. We want the

entire drone swarm to fly together, navigate obstacles, and continue to either follow a set

path or follow the leader in all such situations. Even if the set of drones get partitioned

and separated due to obstacles, we expect that they should join the swarm as soon as

they can. To the best of our knowledge, there is no theory or simulation that can achieve

all this.

We published a research paper in this area with new theoretical results. We have a Unity-

based simulator that implements the paper. It should prove to be a valuable resource for

groups working on autonomous drones or mobile robots.

Figure 4: A set of nodes flying in a cityscape

https://srsarangi.github.io/files/papers/droneswarm.pdf

6

Figure 5: Different scenarios in our simulator

We will transfer the entire code to any interested party (subject to the terms decided in

the EoI meeting). The algorithm was implemented on a Beaglebone Black Board. The

frame rate was approximately 75 FPS (frames per second).

To detect and navigate around obstacles, sense the position relative to other drones, and

continue to navigate without GPS signals, each drone relies on depth maps (related to

product #1: stereo-camera).

5. Topological Placement Tool

This placement tool [published in Smart Cities 2023, link] was originally designed to place

charging stations in a city in a quick and very intuitive manner. The user simply needs to

specify the demand points (points of high demand). The GUI-based tool that relies on

OpenStreetMaps uses a bunch of algorithms to find the best possible placement of

charging stations. The entire process can be conveniently visualized by the user of the

tool. It can be used for any kind of facility location problem. It is per se not limited to

charging station placement.

It first uses a clustering algorithm to partition the network into intuitive clusters. There are

many options for clustering the network (based on OpenStreetMaps). The best algorithm

is the ToMaTo clustering algorithm that uses results from theoretical topology. Once the

clustering is done, the demand points can be specified.

Subsequently, an ILP solver can be used to find the best possible locations to place the

facilities such as charging stations. The basic reason for the speedup is that the tool uses

the medial axis transform and persistent homology-based methods. We divide the entire

https://srsarangi.github.io/files/papers/smartcity-placement.pdf

7

city into a set of 5 basic shapes (subject to certain topological transformations). We

compute solutions for each of these shapes and appropriately modify them for the actual

shape that is there in the layout of the city. After a round of interactive analyses, the final

assignment is generated. We have tried this method for the largest 50 cities of the world

and gotten good results.

Extending the framework to model other general facility location problems is quite easy.

Some screenshots follow:

Figure 6: Layout of the tool

8

Figure 7: A demonstration of the area select feature

Figure 8: Analysis of Perth (after topological clustering)

9

Figure 9: A demonstration of our proposed algorithm on a layout of Seoul

6. Car-Data Logger

This is a data logging solution for CAN bus data in vehicles. Our aim is to record all the

CAN bus signals in a vehicle such that they can be used for analysis later. This is

important for identifying driving patterns, forensic investigations (post an accident) and

for vehicle diagnostics [paper published in International Conference on Intelligent

Transportation Systems, 2023, link]. Unfortunately, current state-of-the-art solutions in

this space have the following shortcomings.

1. ECUs generate data at about 500 kbps. This can easily overwhelm the capacity of

automotive-grade SD cards or FRAM memories. Having larger memories of this

kind can increase the costs significantly particularly in the cost-sensitive market.

2. Current Event Data Recorders (EDRs) do not have facilities to compress the data

and store them in a lossy format, where the degree of loss increases with time.

The features of our novel solutions are as follows:

1. Lossy + lossless storage. The degree of information loss depends on time.

2. A novel online data compression algorithm.

3. Implementation on the ARM Beaglebone board.

4. Can store 3.2X more data than conventional solutions (at line speed).

5. A traditional EDR with a lossless fills a 4 GB log in 3 days, whereas our system

fills it in 10 days.

6. It preserves most anomalies.

https://srsarangi.github.io/files/papers/smrtComp.pdf

10

Figure 10: A demonstration of the system. The Synopsys Silver tool generates the CAN bus traces. The Unity simulator
is used to drive the car. Note the Beaglebone board that runs the online compression algorithm.

Deliverable: In this case, the deliverable is the code that implements the algorithm.

7. Secure Compression + Encryption Accelerator

Up till now compression and encryption were separate functions, where the standard

paradigm is to compress the data first and then encrypt it. This is a slow process and

often the size of the compressed text (subsequently encrypted without addition/removal

of bytes) gives an idea of the plaintext. There are ways to fix this using zero-padding and

adding dummy data.

We propose a new paradigm (preprint paper) based on well-known results in chaos theory.

The steps are as follows:

1. We generate a chaotic logistic map to permutate bytes in the plaintext.

2. We use a novel Fisher-Yates merge-shuffle algorithm.

3. This is done in the shadow of a DRAM miss.

4. Next, we perform the compression using the zstd library (as we have done in the

preprint paper). The RTL code for the zstd algorithm will not be bundled with the

software. Instead, we will provide the implementation of another fast compression

algorithm based on base-delta compression.

5. Next, we use a Henon and Lorentz map for substitution.

This is an ultra-fast compression+encryption scheme, which is very well suited for IoT

applications. Note that it does not provide industrial-grade security, which one can expect

from AES-128 or AES-256. The zstd version of the algorithm did pass all NIST tests for

https://arxiv.org/abs/2306.06949

11

a wide variety of datasets. However, with base-delta compression, the results have not

been thoroughly evaluated yet.

Notwithstanding this limitation, this is a good piece of hardware for IoT applications that

require best-effort encryption and reduction in the volume of network traffic. The latter is

easily achieved through compression. Hence, in cases, where best-effort encryption is

required and hackers have limited motivation and access to computational hardware,

such a scheme should prove to be beneficial.

